Vibrational Analysis of the all-trans-Retinal Chromophore in Light-Adapted Bacteriorhodopsin

Steven O. Smith, ${ }^{1 \mathrm{a}, \mathrm{c}}$ Mark S. Braiman, ${ }^{1 \mathrm{a}, \mathrm{d}}$ Anne B. Myers, ${ }^{1 \mathrm{a}, \mathrm{e}}$ Johannes A. Pardoen, ${ }^{1 \mathrm{~b}}$ Jacques M. L. Courtin, ${ }^{1 \mathrm{lb}}$ Chris Winkel, ${ }^{\text {1b }}$ Johan Lugtenburg, ${ }^{1 \mathrm{~b}}$ and Richard A. Mathies* ${ }^{1 \mathrm{la}}$
Contribution from the Departments of Chemistry, University of California, Berkeley, California 94720, and Leiden University, 2300 RA Leiden, The Netherlands. Received May 27, 1986

Abstract

Resonance Raman spectra of light-adapted bacteriorhodopsin $\left(\mathrm{BR}_{568}\right)$ have been obtained using purple membrane regenerated with isotopic retinal derivatives. The chromophore was labeled with ${ }^{13} \mathrm{C}$ at positions $5,6,7,8,9,10,11,12,13$, 14, and 15 , while deuterium substitutions were made at positions $7,8,10,11,12,14$, and 15 and on the Schiff base nitrogen. On the basis of the observed isotopic shifts, empirical assignments have been made for the vibrations observed between 700 and $1700 \mathrm{~cm}^{-1}$. A modified Urey-Bradley force field has been refined to satisfactorily reproduce the vibrational frequencies and isotopic shifts. Of particular importance is the assignment of the normal modes in the structurally sensitive $1100-1300$ cm^{-1} "fingerprint region" to specific combinations of $\mathrm{C}-\mathrm{C}$ stretching and CCH rocking motions. The methyl-substituted " $\mathrm{C}_{8}-\mathrm{C}_{9}$ " and " $\mathrm{C}_{12}-\mathrm{C}_{13}$ " stretches are highest in frequency at 1214 and $1248-1255 \mathrm{~cm}^{-1}$, respectively, as a result of coupling with their associated C -methyl stretches. The $\mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches also couple strongly with the $\mathrm{C}_{10} \mathrm{H}$ and $\mathrm{C}_{14} \mathrm{H}$ rocks, respectively The $1169-\mathrm{cm}^{-1}$ mode is assigned as a relatively localized $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch, and the $1201-\mathrm{cm}^{-1}$ mode is a localized $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch. The frequency ordering and spacing of the $\mathrm{C}-\mathrm{C}$ stretches in BR_{568} is the same as that observed in the all-trans-retinal protonated Schiff base. However, each vibration is $\sim 10 \mathrm{~cm}^{-1}$ higher in the pigment as a result of increased π-electron delocalization. The frequencies and Raman intensities of the normal modes are compared with the predictions of theoretical models for the ground- and excited-state structure of the retinal chromophore in bacteriorhodopsin.

Chemical reactions that occur in the active sites of biological macromolecules such as enzymes, photosynthetic pigments, and heme proteins often involve rapid changes in the structure of transiently bound substrate molecules or covalently bound prosthetic groups. Vibrational spectroscopy is a powerful method for studying the molecular changes involved in these reactions since the frequencies and intensities of the vibrational normal modes of an enzyme substrate or prosthetic group are sensitive to both molecular structure and environment. Resonance Raman spectroscopy is a useful technique for obtaining vibrational spectra of specific chromophoric groups within proteins. By selecting a laser excitation wavelength within the absorption band of retinal pigments or heme proteins, it is possible to selectively enhance the chromophore resonances over the more numerous protein vibrations. ${ }^{2,3}$ Furthermore, the use of pulsed laser techniques can provide picosecond time-resolution, sufficient to monitor very fast biochemical reactions. ${ }^{4}$ Fourier transform infrared (FTIR) difference spectroscopy offers a second approach for obtaining spectra of reactive groups in macromolecules. ${ }^{5}$ In both the Raman and FTIR techniques, interpreting the changes in vibrational spectra in terms of molecular structure or environment requires the assignment of the vibrational lines to specific normal modes.

[^0]Bacteriorhodopsin (BR), a 26000 -dalton protein in the "purple membrane" of Halobacterium halobium, is an example of a protein whose structure and function can be probed by vibrational spectroscopy. ${ }^{6}$ Light absorption by its retinal prosthetic group (see Figure 1) drives the light-adapted form of this pigment, BR_{568}, through a cyclic photochemical reaction ${ }^{7}$ which results in the transport of protons across the bacterial cell membrane. We are interested in identifying the features in the vibrational spectrum that are characteristic of the structure of the retinal chromophore, as well as learning how retinal's protein environment modifies chromophore structure to make BR an efficient light-energy convertor. This requires detailed vibrational assignments for the all-trans-retinal model compounds as well as for the protein-bound chromophore. The vibrational analyses of all-trans-retinal (ATR) ${ }^{8}$ and more recently the all-trans-retinal protonated Schiff base $(\mathrm{PSB})^{9}$ have brought this goal closer to realization. However, a complete vibrational analysis has not yet been performed for any retinal-containing pigment. A detailed vibrational analysis of BR_{568} is needed to learn more about its structure and function and to provide a basis for the interpretation of the vibrational spectra of other retinal-containing pigments.
In this paper, we present the vibrational assignments of light-adapted bacteriorhodopsin based on an extensive set of ${ }^{13} \mathrm{C}$ and ${ }^{2} \mathrm{H}$-labeled derivatives. Specific isotopic substitution of the retinal chromophore provides a direct method for assigning its normal modes. This approach has permitted one of the most detailed analyses to date of the vibrational structure of a pro-tein-bound chromophore. Comparison of the BR_{568} spectral assignments with those of the all-trans protonated Schiff base indicates that many of the vibrational features that are characteristic of an all-trans structure are observed in the pigment with only slight differences due to bacteriorhodopsin's more delocalized electronic structure. The vibrational analysis of BR_{568} is discussed in the light of recent NMR^{10} and optical results ${ }^{11,12}$ on the
(6) For bacteriorhodopsin reviews see: (a) Birge, R. R. Annu. Rev. Biophys. Bioeng. 1981, 10, 315. (b) Stoeckenius, W.; Bogomolni, R. A. Annu. Rev. Biochem. 1982, 51, 587
(7) Lozier, R. H.; Bogomolni, R. A.; Stoeckenius, W. Biophys. J. 1975, 15, 955.
(8) Curry, B.; Broek, A.; Lugtenburg, J.; Mathies, R. J. Am. Chem. Soc. 1982, 104, 5274.
(9) Smith, S. O.; Myers, A. B.; Mathies, R. A.; Pardoen, J. A.; Winkel, C.; van den Berg, E. M. M.; Lugtenburg, J. Biophys. J. 1985, 47, 653.

Figure 1. Structure of the protonated retinal Schiff base chromophore in light-adapted bacteriorhodopsin. Solid-state ${ }^{13} \mathrm{C}$ NMR and retinal analogue studies have shown that the protein-bound chromophore adopts the 6-s-trans conformation. ${ }^{10,41}$ The chromophore interacts with a protein dipole near $\mathrm{C}_{5}-\mathrm{C}_{7}$ and has a weakened hydrogen-bonding interaction with its counterion A^{-10-12}
structure of the retinal chromophore in BR_{568}, and the Raman frequencies and intensities are compared with the predictions of current models for the structure and photochemistry of bacteriorhodopsin.

Experimental Section

The ${ }^{13} \mathrm{C}$ - and ${ }^{2} \mathrm{H}$-labeled derivatives of retinal were synthesized according to published procedures. ${ }^{13}$ The isomeric purity was $\geq 98 \%$ as determined by high-performance liquid chromatography. The isotopic purity was $\geq 98 \%$ for each position deuteriated and $\geq 92 \%$ for each position labeled with ${ }^{13} \mathrm{C}$ based on mass spectrometric analysis.

Bacterioopsin was isolated and purified from a retinal deficient strain of H. halobium (JW5) and regenerated with isotopically labeled retinals as described in ref 14. In the case of the 10-D, 11-D, 12-D, and 11,12-D derivatives, regeneration of hydroxylamine-bleached purple membrane was used to obtain isotopically labeled purple membrane. ${ }^{15}$ Raman spectra of bacterioopsin regenerated with use of the two procedures are identical. ${ }^{16}$

Raman spectra of light-adapted bacteriorhodopsin were obtained with use of a rapid-flow technique. ${ }^{17}$ The purple membrane suspension was recirculated from a reservoir which was maintained at $10^{\circ} \mathrm{C}$ and illuminated with an incandescent light to keep the sample in the lightadapted state. The flow speed of the sample ($300 \mathrm{~cm} / \mathrm{s}$) and the laser power at 514.5 nm (30 mW cylindrically focused, focal length $=3.7 \mathrm{~cm}$) were adjusted to control photoreaction of the pigment as the sample crossed the laser beam. The photoalteration parameter ${ }^{18}$ was calculated to be ≤ 0.1 on the basis of a molar extinction of BR_{568} at 514.5 nm of $35000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ and a quantum yield for photochemical reaction of 0.3. ${ }^{7.19}$ This corresponds to less than 10% photolysis of the sample as it passes through the laser beam. The purple membrane solutions were buffered in distilled water at pH 7 with 10 mM HEPES, and typical sample volumes were $\sim 25 \mathrm{~mL}$ with an absorbance of 1-2 at 570 nm (1 cm path length). Raman spectra of the all-trans-PSB were obtained of microcrystalline precipitates with use of $752-\mathrm{nm}$ laser excitation as previously described. ${ }^{9}$

The Raman apparatus consisted of a Spex 1401 double monochromator with a Spex 1419 illuminator and photon counting detection (PAR $1105 / 1120$). The monochromator was stepped in $2-\mathrm{cm}^{-1}$ increments and the spectral resolution was $\sim 3.4 \mathrm{~cm}^{-1}$ for the ${ }^{13} \mathrm{C}$ derivatives and $4-5$ cm^{-1} for the ${ }^{2} \mathrm{H}$ derivatives. Data were averaged, smoothed (three point

[^1]sliding average), and corrected for detector sensitivity. Fluorescence backgrounds (simulated by a quartic polynomial) were subtracted with a PDP 11/23 computer.

Computational Methods, Normal mode calculations were performed with use of the Wilson FG method. ${ }^{20}$ The atomic coordinates for the 6-s-trans, C_{15}-anti all-trans protonated Schiff base were calculated with use of the QCFF- π method. ${ }^{21}$ Solid-state NMR studies have shown that the protein-bound chromophore adopts the planar $\mathrm{C}_{6}-\mathrm{C}_{7} s$-trans conformation, ${ }^{10}$ and NMR and Raman experiments indicate that the $\mathrm{C}=\mathrm{N}$ bond is in the trans (or anti) configuration ${ }^{22}$ as depicted in Figure 1. The methyl groups were made tetrahedral to allow the transfer of force constants developed for small model polyenes, and they were rotated to give reflection symmetry in the plane of the polyene chain. Also, the structure was truncated by replacing carbons 1,4 , and 18 of the ionone ring and the δ-carbon of the lysine group with atoms that have a mass of 15 , a valence of 1 , and the default potential parameters of an sp^{3} carbon.

The final force field for BR_{568} is given in Table I . We began with the force field developed to fit the Raman frequencies of the all-transretinylidine n-butylamine PSB. ${ }^{9}$ The all-trans-PSB force constants which were iterated to produce the BR_{568} force field are included in parentheses in Table I. For coordinate pairs whose geometric relationship changes as a result of cis-trans isomerization about the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond, the appropriate bend-bend and bend-stretch interaction constants were changed to values derived from studies on configurational isomers, small molecules, and retinal model compounds. ${ }^{23}$

For the in-plane vibrations, the stretching and hydrogen bending force constants, along with selected off-diagonal coupling constants, were iteratively adjusted to obtain the best fit to the experimental frequencies of native BR and 16 of its isotopic derivatives ($N-\mathrm{D} ; 15-\mathrm{D} ; 14-\mathrm{D} ; 12-\mathrm{D}$; $11-\mathrm{D} ; 10-\mathrm{D} ; 8$-D; 7-D; $14,15-{ }^{13} \mathrm{C} ; 13-{ }^{-13} \mathrm{C} ; 12-^{13} \mathrm{C} ; 10,11-{ }^{13} \mathrm{C} ; 9 .{ }^{13} \mathrm{C} ; 88^{-13} \mathrm{C}$; $7-{ }^{13} \mathrm{C}$; and $6{ }^{-13} \mathrm{C}$). These derivatives incorporate ${ }^{13} \mathrm{C}$ and ${ }^{2} \mathrm{H}$ labels at key positions along the retinal chain and were the minimum set necessary for successful refinement of the force field. For the out-of-plane vibrations, the diagonal wag and selected off-diagonal wag-wag interaction constants were iterated to obtain the best fit to the experimental frequencies of native BR and eleven isotopic derivatives (N-D; 15-D; 15,N-D $; 14-\mathrm{D}$; $14, N-\mathrm{D}_{2} ; 12-\mathrm{D} ; 11-\mathrm{D} ; 11,12-\mathrm{D}_{2} ; 10-\mathrm{D} ; 8-\mathrm{D}$; and 7D). Experimental frequencies corresponding to vibrations localized on the methyl groups were not included in the force constant refinement. The final force field in Table I was refined to fit 231 in -plane frequencies of native BR and 16 isotopic derivatives with a root-mean-square error of $4.9 \mathrm{~cm}^{-1}$ (maximum error $17 \mathrm{~cm}^{-1}$) and 68 out-of-plane frequencies of native $B R$ and 11 isotopic derivatives with a root-mean-square error of $6.3 \mathrm{~cm}^{-1}$ (maximum error $19 \mathrm{~cm}^{-1}$). In addition, the final force field fit the 274 CC stretching and CCH rocking frequencies of 20 other isotopic derivatives which were not used in the refinement (e.g., $14,15-D_{2^{-}}, 12,14-D_{2^{-}}$, and $7,8-\mathrm{D}_{2}-\mathrm{BR}_{568}$) with a root-mean-square error of $5.7 \mathrm{~cm}^{-1}$ (maximum error $19 \mathrm{~cm}^{-1}$). The molecular geometry and the complete force field are available in the supplementary material.

Results

The observed Raman lines of BR_{568} can be roughly divided into four groups: the $\mathrm{C}=\mathrm{C}$ stretches ($1500-1600 \mathrm{~cm}^{-1}$), the CCH in-plane rocks ($1250-1400 \mathrm{~cm}^{-1}$), the $\mathrm{C}-\mathrm{C}$ stretches ($1100-1250$ cm^{-1}), and the hydrogen out-of-plane (HOOP) wags ($700-1000$ cm^{-1}). We first discuss the assignments of these four vibrational groups and then separately discuss the normal modes associated with the methyl groups and the cyclohexene ring. The calculated normal modes and assignments for native BR_{568} are given in Table II.
(A) In-Plane Chain Vibrations. $\mathrm{C}=\mathrm{C}$ Stretches. The retinal chromophore in BR_{568} has five $\mathrm{C}=\mathrm{C}$ stretching internal coordinates that contribute primarily to vibrations in the $1500-$

[^2]Table I. Modified Urey-Bradley Force Field for $\mathrm{BR}_{568}{ }^{a}$

coordinate	force constant	coordinate	force constant	coordinate	force constant
Chain Stretches		Urey-Bradley		Out-of-Plane	
$K(5=6)$	7.04 (6.40)	$F(\mathrm{C}=\mathrm{CH})$	0.52	$H(7 w)$	0.520
$K(7=8)$	6.79 (6.56)	$F(\mathrm{C}-\mathrm{CH})$	0.49	$H(8 w)$	0.494
$K(9=10)$	6.10 (6.34)	F (CCC)	0.35	$H(10 \mathrm{w})$	0.475
$K(11=12)$	5.80 (6.22)	$F(\mathrm{RCR})$	0.59	H(11w)	0.476
$K(13=14)$	6.27 (6.20)	$F(\mathrm{RCC})$	0.59	$H(12 \mathrm{w})$	0.480
$K(\mathrm{C}=\mathrm{N})$	7.80 (7.85)	$F(\mathrm{RCH})$	0.55	$H(14 w)$	0.450
$K(6-7)$	2.58 (3.57)	$F(\mathrm{~N}=\mathrm{CH})$ $F(\mathrm{C}=\mathrm{NH})$	0.85 (0.80)	$H(15 w)$	0.553
$K(8-9)$	3.70 (3.48)	$F(\mathrm{C}=\mathrm{NH})$ $F(\mathrm{C}-\mathrm{NH})$	0.50 (0.30)	$H(\mathrm{Nw})$ $H(\mathrm{CH}$	0.386
$K(10-11)$	3.92 (3.86)	$F(\mathrm{C}-\mathrm{NH})$ $F(\mathrm{~N}-\mathrm{CH})$	0.55 0.48	$H\left(\mathrm{CH}_{3}\right)$ $t(\mathrm{C}-\mathrm{C})$	0.570 0.197
$K(12-13)$	4.51 (4.13)	$F(\mathrm{~N}-\mathrm{CH})$ $F(\mathrm{CC}=\mathrm{N})$	0.48 0.80	$t(\mathrm{C}=\mathrm{C})$	0.197 0.545
$K(14-15)$	4.21 (4.01)	$\cdots(\mathrm{C}=\mathrm{NC})$	0.80 0.59	$t\left(\mathrm{C}-\mathrm{CH}_{3}\right)$	0.081
$K(\mathrm{C}-\mathrm{R})$	2.55 (3.07)	$F(\mathrm{~N}-\mathrm{CR})$	0.32	$t\left(\mathrm{~N}-\mathrm{CH}_{2}\right)$	0.081
$K\left(\mathrm{C}_{11 \mathrm{~s}}-\mathrm{R}\right)$ $K(\mathrm{C}-\mathrm{H})$	2.23 (3.07) 4.83	$F\left(\mathrm{HC}_{19 \mathrm{~s}} \mathrm{H}\right)$	0.13	(6w, 7 w)	-0.130
$K\left(\mathrm{C}_{15}-\mathrm{H}\right)$	4.00	Non-U	adley	(8w,9 $\left.\mathrm{CH}_{3} \mathrm{w}\right)$	0.088 -0.063
$K(\mathrm{~N}-\mathrm{H})$	4.83	$k(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C})$	-0.280 (-0.31)	(10w,11w)	-0.063
$K\left(\mathrm{C}_{1 y_{s}}-\mathrm{H}\right)$	4.71	$k(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N})$	-0.700 (-0.720)	$\left(12 \mathrm{w}, 13 \mathrm{CH}_{3} \mathrm{w}\right)$ $(14 \mathrm{w}, 15 \mathrm{w})$	0.073 -0.055
$K\left(\mathrm{~N}-\mathrm{C}_{\mathrm{lys}}\right)$	2.74	$k(\mathrm{C}=\mathrm{C}, \mathrm{C}-\mathrm{C})$	$0.294(-0.056)$	(5w,6w)	-0.172
Chain Bends		$k(\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{C})$	-0.051 (-0.09)	(7w,8w)	-0.178
$H(C C C)$	0.570 (0.57)	$k(\mathrm{CC}, \mathrm{CR})$	0.103 (-0.14)	$\left(9 \mathrm{CH}_{3} \mathrm{w}, \mathrm{l} 0 \mathrm{w}\right)$	0.174
$H(\mathrm{CCC}) \mathrm{cis}^{b}$	0.735 (0.82)	$k(\mathrm{CC}, \mathrm{CC})^{\text {c }}$	-0.130 (-0.04)	(11w,12w)	-0.168
$H(\mathrm{C}=\mathrm{CH})$	0.300 (0.288)	$m(\mathrm{CC}, \text { bend })^{d}$	0.046 (0.07)	$\left(13 \mathrm{CH}_{3} \mathrm{w}, 14 \mathrm{w}\right)$	0.172
$H(\mathrm{C}-\mathrm{CH})$	0.355 (0.300)	h (bend, bend) ${ }^{\text {e }}$	$0.032(0.06 / 0.04)^{8}$	(15w,Nw)	-0.138
H (RCR)	0.700 (0.75)	h (bend, bend) ${ }^{\prime}$	$0.076(0.06 / 0.04)^{8}$	(14w,Nw)	-0.014
$H(\mathrm{CC}=\mathrm{N})$	0.570			$(t, w)_{d}$	0.292
$H(\mathrm{C}=\mathrm{NC})$	0.700 (0.82)	$h(\mathrm{CCC}, \mathrm{CCR}) \mathrm{cis}$	$\begin{aligned} & 0.12 \\ & 0.338 \end{aligned}$	$(\mathrm{t}, \mathrm{w})_{\mathrm{s}}$	0.116
$H(\mathrm{~N}-\mathrm{CR})$	0.690			$\left(\mathrm{t}\left(\mathrm{C}-\mathrm{CH}_{3}\right)\right.$, w)	-0.052
$\mathrm{H}(\mathrm{N}=\mathrm{CH})$	0.191 (0.272)	CH_{3} Group		$l(\mathrm{t}, \mathrm{CCH})$	0.056
$\mathrm{H}(\mathrm{C}=\mathrm{NH})$	0.279 (0.392)	$K(\mathrm{CH})$	4.709	$l(\mathrm{w}, \mathrm{CCH})$ methyl	0.080
$H(\mathrm{C}-\mathrm{NH})$	0.345 (0.329)	$\mathrm{K}\left(\mathrm{C}-\mathrm{CH}_{3}\right)$	2.550	$l(\mathrm{w}, \mathrm{CCH})$ adjacent	-0.018
$H(\mathrm{R}-\mathrm{CH})$	0.310 (0.329)	$H(\mathrm{CCH})$	0.395 (0.389)		
$H(\mathrm{~N}-\mathrm{CH})$	0.389	$H(\mathrm{HCH})$	0.506		
$H\left(\mathrm{HC}_{195} \mathrm{H}\right)$	0.506	$F(\mathrm{CCH})$	0.480		
$H\left(\mathrm{C}_{6} \mathrm{C}_{7} \mathrm{H}\right)$	0.415 (0.300)	$F(\mathrm{HCH})$	0.130		
$H\left(\mathrm{C}_{9} \mathrm{C}_{8} \mathrm{H}\right)$	0.415 (0.300)	$h(\mathrm{HCH}, \mathrm{HCH})$	-0.020		
		$h(\mathrm{CCH}, \mathrm{CCH})$	0.034		

${ }^{a}$ Modified Urey-Bradley force field adapted from ref 8 and 9. Symbols used: K, diagonal stretch; H, diagonal bend; F, Urey-Bradley quadratic constant (linear term set equal to $-0.1 F$); k, stretch-stretch interaction; h, bend-bend interaction (two common atoms); m, stretch-bend interaction (one common atom); t, chain torsion; ($\mathrm{t}, \mathrm{w})_{\mathrm{d}}$ wag-torsion interaction across double bond; ($\left.\mathrm{t}, \mathrm{w}\right)_{\mathrm{s}}$ wag-torsion interaction across single bond; (w, w) wag-wag interaction; $l(t, C C H)$, chain torsion-methyl bend interaction; $l(w, C C H)$, chain wag-methyl bend interaction. Stretching force constants in mdyn $/ \AA$, stretch-bend cross terms in mdyn/rad, a nd bending constants in mdyn \AA / rad^{2}. PSB values are in parentheses. ${ }^{b}$ Applies to all CCC or CCCH_{3} bends that are cis to another such bend. ${ }^{\text {E }}$ Applies to pairs of chain stretches separated by three or five bonds. Interactions involving the $\mathrm{C}_{5}=\mathrm{C}_{6}$ bond have not been included. ${ }^{d}$ This term applies to all interactions between chain CC stretches and CCC or CCH bends which have a nonvertex atom of the bending angle in common. Its sign is positive if the substituents are trans and negative if they are cis. 'Applies to bend, bend interactions across trans double bonds. ${ }^{f}$ Applies to bend, bend interactions across trans single bonds. ${ }^{g}$ In the all-trans-PSB field, all $h(\mathrm{CCH}, \mathrm{CCH})$ and $h(\mathrm{CCC}, \mathrm{CCH})$ constants were $0.06(\mathrm{mdyn}, \AA) / \mathrm{rad}^{2}$, and $h\left(\mathrm{CCC}, \mathrm{CC}-\mathrm{CH}_{3}\right)$ constants were $0.04(\mathrm{mdyn} \cdot \AA) / \mathrm{rad}^{2}$.
$1600-\mathrm{cm}^{-1}$ region. The Raman spectrum of native BR_{568} (Figure 2A) exhibits only three resolved ethylenic lines at 1527, 1581, and $1600 \mathrm{~cm}^{-1}$; however, peak-fitting of the intense $1527-\mathrm{cm}^{-1}$ band reveals two less intense lines at 1533 and $1550 \mathrm{~cm}^{-1}$ (Table III). The individual stretches are significantly mixed in the normal modes due to their near degeneracy and the potential energy coupling of the $\mathrm{C}=\mathrm{C}$ internal coordinates through the conjugated π-system, The relative contributions of each of the $\mathrm{C}=\mathrm{C}$ stretching coordinates to the normal modes can most accurately be determined from the observed ${ }^{13} \mathrm{C}$ shifts. ${ }^{13} \mathrm{C}$-Substitution lowers the frequency of any ethylenic normal mode which contains a component of the labeled $\mathrm{C}=\mathrm{C}$ stretch. For example, a single ${ }^{13} \mathrm{C}$-substitution in a pure $\mathrm{C}=\mathrm{C}$ stretch would result in a shift of $\sim 30 \mathrm{~cm}^{-1}$. The ${ }^{13} \mathrm{C}$ data are presented in Figure 2, and the experimental and calculated frequencies are summarized in Table III.

The observed changes in intensity of the $\mathrm{C}=\mathrm{C}$ vibrations upon isotopic substitution are also of interest because they provide qualitative information about the sign of each $\mathrm{C}=\mathrm{C}$ component in the normal mode. 8,9 In a symmetric combination of $\mathrm{C}=\mathrm{C}$ stretches, the intrinsic resonance Raman intensities of the individual stretches add to give an intense band, while in an antisymmetric stretch combination the component $\mathrm{C}=\mathrm{C}$ stretching intensities tend to cancel. This simple interpretation is possible because all of the double bonds are expected to lengthen upon
electronic excitation, giving ground \rightarrow excited state geometry changes of the same sign. With this in mind we can use the intensity changes observed in the isotopic spectra of BR_{568} to estimate qualitatively the magnitude and sign of the $\mathrm{C}=\mathrm{C}$ components in an ethylenic normal mode.

We first consider the most intense ethylenic mode at $1527 \mathrm{~cm}^{-1}$. This mode is assigned as a symmetric combination of the $\mathrm{C}_{13}=\mathrm{C}_{14}$, $\mathrm{C}_{11}=\mathrm{C}_{12}, \mathrm{C}_{9}=\mathrm{C}_{10}, \mathrm{C}_{7}=\mathrm{C}_{8}$, and $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretches with a predicted frequency of $1528 \mathrm{~cm}^{-1}$. The atomic displacements for this mode are presented in Figure 3A to illustrate how the carbon atoms move in-phase in the symmetric $\mathrm{C}=\mathrm{C}$ combination. The approximate contributions of each of the $\mathrm{C}=\mathrm{C}$ internal coordinates to this mode can be established by looking at the isotopic derivative spectra, For example, ${ }^{13} \mathrm{C}$-substitution at C_{13} or C_{14} (F and D in Figure 2) results in a $7-$ or $8-\mathrm{cm}^{-1}$ shift of the $1527-\mathrm{cm}^{-1}$ line, indicating a substantial contribution from the $\mathrm{C}_{13}=\mathrm{C}_{14}$ stretching coordinate. This mode is calculated to shift to 1523 and 1525 cm^{-1} in the 14 - and $13-{ }^{13} \mathrm{C}$ derivatives, respectively, and the shifted mode has much greater $\mathrm{C}_{13}=\mathrm{C}_{14}$ character $\left(\mathrm{C}_{13}=\mathrm{C}_{14}\right.$ coefficient $=0.15-0.16$) than calculated in the native normal mode ($\mathrm{C}_{13}=\mathrm{C}_{14}$ coefficient $=0.09$). ${ }^{13} \mathrm{C}$-Substitution at C_{9} or C_{10} produces a $5-7-\mathrm{cm}^{-1}$ shift of the $1527-\mathrm{cm}^{-1}$ line, while substitution at C_{11} or C_{12} results in a $7-\mathrm{cm}^{-1}$ shift. The nearly equal ${ }^{13} \mathrm{C}$ shifts in each of these derivatives indicate that the $1527-\mathrm{cm}^{-1}$ line contains approximately equal contributions from the $\mathrm{C}_{13}=\mathrm{C}_{14}, \mathrm{C}_{11}=\mathrm{C}_{12}$,

Table II. Calculated Frequencies and Assignments for Native BR $_{568}$

obsd	calcd $^{\text {a }}$	description ${ }^{\text {b }}$
1640	1639	$\begin{gathered} 0.34(\mathrm{C}=\mathrm{N})-0.12(13=14)-0.10(14-15)- \\ 0.10(\mathrm{~N}-\mathrm{C})-0.55(\mathrm{NH})+0.47(15 \mathrm{H}) \end{gathered}$
1600	1606	$\begin{aligned} & 0.31(7=8)-0.11(5=6)-0.12(13=14)-0.15(8-9) \\ & -0.66(8 \mathrm{H})+0.48(7 \mathrm{H}) \end{aligned}$
	1598	$\begin{aligned} & 0.32(5=6)+0.11(7=8)-0.12(9=10)- \\ & 0.09(11=12)-0.13(6-7)+0.10(10-11)+ \\ & 0.44(7 \mathrm{H})-0.27(11 \mathrm{H}) \end{aligned}$
1581	1580	$\begin{aligned} & 0.27(13=14)-0.19(5=6)-0.12(9=10)- \\ & 0.16(14-15)-0.56(14 \mathrm{H}) \end{aligned}$
1533	1534	$\begin{aligned} & 0.31(9=10)-0.14(11=12)-0.13(13=14)- \\ & 0.09(14-15)+0.08(12-13)-0.09\left(9-\mathrm{CH}_{3}\right)- \\ & 0.47(10 \mathrm{H})+0.36(12 \mathrm{H}) \end{aligned}$
1527	1528	$\begin{aligned} & 0.28(11=12)+0.10(7=8)+0.09(13=14)+ \\ & 0.08(9=10)+0.09(5=6)-0.14(10-11)- \\ & 0.17(12-13)-0.04(14-15)+0.65(11 \mathrm{H})- \\ & 0.64(12 \mathrm{H})-0.34(10 \mathrm{H})+0.27(7 \mathrm{H}) \end{aligned}$
1456	1455	$\left(19 \mathrm{CH}_{3}\right)$ in-plane deformation
1456	1455	$\left(20 \mathrm{CH}_{3}\right)$ in-plane deformation
1448	1450	$\left(19 \mathrm{CH}_{3}\right)$ out-of-plane deformation
1448	1450	$\left(20 \mathrm{CH}_{3}\right.$) out-of-plane deformation
	1395	$\begin{gathered} 0.59(10 \mathrm{H})-0.54(8 \mathrm{H})-0.52(7 \mathrm{H})-0.09\left(9-\mathrm{CH}_{3}\right)+ \\ 0.08(10-11)-0.06(12-13)+0.08(10-11) \end{gathered}$
	1382	$\begin{aligned} & 0.49(14 \mathrm{H})-0.08\left(13-\mathrm{CH}_{3}\right)+0.13(12-13)+ \\ & 0.07(14-15) \end{aligned}$
1378	1371	$\left(19 \mathrm{CH}_{3}\right)$ symmetric deformation
1378	1364	$\left(20 \mathrm{CH}_{3}\right)$ symmetric deformation
1348	1352	$\begin{aligned} & 0.99(\mathrm{NH})+0.13(12-13)+0.06(14-15)- \\ & 0.15\left(13-\mathrm{CH}_{3}\right) \end{aligned}$
1345	1337	$\begin{aligned} & 0.74(15 \mathrm{H})-0.28(\mathrm{NH})+0.26(14 \mathrm{H})+0.15(12-13) \\ & -0.06(14-15)-0.11\left(13-\mathrm{CH}_{3}\right) \end{aligned}$
1330	1325	$\begin{aligned} & 0.57(7 \mathrm{H})+0.48(8 \mathrm{H})+0.48(10 \mathrm{H})+0.38(15 \mathrm{H})+ \\ & 0.14(8-9)-0.18\left(9-\mathrm{CH}_{3}\right) \end{aligned}$
1322	1314	$\begin{gathered} 0.45(12 \mathrm{H})+0.45(11 \mathrm{H})+0.32(8 \mathrm{H})-0.26(7 \mathrm{H})- \\ 0.49(15 \mathrm{H})+0.16(8-9)-0.13\left(9-\mathrm{CH}_{3}\right) \end{gathered}$
1304	1303	$0.62(7 \mathrm{H})-0.58(8 \mathrm{H})+0.37(12 \mathrm{H})-0.15(7=8)$
1273	1277	$\begin{aligned} & 0.81(11 \mathrm{H})-0.33(12 \mathrm{H})+0.30(10 \mathrm{H})-0.17(11=12) \\ & -0.08(10-11) \end{aligned}$
1255	1255	$\begin{aligned} & 0.77 \text { (lysine rock) }-0.07(14-15)-0.07(12-13)+ \\ & 0.38(14 \mathrm{H})-0.27(15 \mathrm{H}) \end{aligned}$
1248	1244	$\begin{aligned} & 0.14(12-13)+0.04(14-15)-0.68(14 \mathrm{H})+ \\ & 0.47(\text { lysine rock })-0.37(15 \mathrm{H}) \end{aligned}$
1214	1218	$\begin{aligned} & 0.18(8-9)-0.11(14-15)-0.53(10 \mathrm{H})-0.49(12 \mathrm{H})- \\ & 0.08\left(9-\mathrm{CH}_{3}\right) \end{aligned}$
1201	1201	$0.26(14-15)+0.13(8-9)-0.26(10 \mathrm{H})+0.28(15 \mathrm{H})$
1169	1170	$0.30(10-11)-0.08(8-9)+0.27(11 \mathrm{H})-0.19(12 \mathrm{H})$
	1124	0.32(6-7)
1048	1055	$0.68\left(20 \mathrm{CH}_{3}\right.$ or $)+0.43\left(19 \mathrm{CH}_{3}\right.$ or $)$
	1051	$0.71\left(19 \mathrm{CH}_{3}\right.$ or) $-0.43\left(20 \mathrm{CH}_{3}\right.$ or $)$
	1047	$0.32(\mathrm{~N}-\mathrm{C})$
1022	1009	$0.56\left(20 \mathrm{CH}_{3} \mathrm{r}\right)-0.51\left(19 \mathrm{CH}_{3} \mathrm{r}\right)$
1008	1001	$0.56\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+0.53\left(20 \mathrm{CH}_{3} \mathrm{r}\right)$

${ }^{a}$ All frequencies are in cm^{-1}. ${ }^{b}$ Coefficients ($\partial S / \partial Q$) of internal coordinates S in the normal modes Q. Symbols used: H, in-plane hydrogen rock; or, out-of-plane methyl rock; r, in-plane methyl rock. Coefficients of CC stretches are $\sim 1 / 6^{1 / 2}$ of CCH rocking coefficients having comparable potential energy contributions due to their greater reduced mass.
and $\mathrm{C}_{9}=\mathrm{C}_{10}$ stretches. The $2-3-\mathrm{cm}^{-1}$ shift of the $1527-\mathrm{cm}^{-1}$ line in the $7-$ and $8-{ }^{13} \mathrm{C}$ derivatives indicates a smaller contribution from the $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretching coordinate. The large intensity of the $1527-\mathrm{cm}^{-1}$ line is consistent with the assignment of this vibration as an in-phase combination of these four stretches. The calculation produces a symmetric combination of these stretches as the lowest frequency $\mathrm{C}=\mathrm{C}$ mode but with unequal coefficients. The calculated $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretching component in the $1527 \mathrm{~cm}^{-1}$ mode is too large. This is reflected in the ${ }^{13} \mathrm{C}$ shifts calculated in the $12-{ }^{13} \mathrm{C}$ and $11-{ }^{13} \mathrm{C}$ derivatives which are approximately double the observed values (Table III). On the other hand, the $\mathrm{C}_{9}=\mathrm{C}_{10}$ stretch makes too small a contribution to the calculated $1527-\mathrm{cm}^{-1}$ mode. In the $9-$ and $10-{ }^{13} \mathrm{C}$ derivatives, the $1527-\mathrm{cm}^{-1}$ line is not calculated to shift as observed; instead the $1533-\mathrm{cm}^{-1}$ line which has a large coefficient for the $\mathrm{C}_{9}=\mathrm{C}_{10}$ stretch is calculated to shift $18-21 \mathrm{~cm}^{-1}$ in these derivatives. Selectively lowering the $\mathrm{C}_{9}=\mathrm{C}_{10}$ force constant increases the proportion of $\mathrm{C}_{9}=\mathrm{C}_{10}$ character in the " $1528-\mathrm{cm}^{-1 "}$ mode relative to the " $1534-\mathrm{cm}^{-1}$ " mode; however, the frequencies for these two modes are then calculated much lower than the experimental 1527- and $1533-\mathrm{cm}^{-1}$ positions. The coefficients in these highly mixed modes are sensitive to the $k(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C})$ and $k(\mathrm{C}=\mathrm{C}, \mathrm{C}-\mathrm{C})$ coupling constants, ${ }^{8}$ and fitting to frequencies and frequency shifts does not yield accurate mode descriptions in this case.
The $1533-\mathrm{cm}^{-1}$ line is calculated to be an antisymmetric combination of the $\mathrm{C}_{9}=\mathrm{C}_{10}$ and $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretches. The atomic displacements of this mode are depicted in Figure 3B. The $1533-\mathrm{cm}^{-1}$ line is observed to shift $7-12 \mathrm{~cm}^{-1}$ in the $9-, 10-, 11-$, and $12-{ }^{13} \mathrm{C}$ derivatives, confirming that this mode has contributions from the $\mathrm{C}_{9}=\mathrm{C}_{10}$ and $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretches. The low intensity of this mode is consistent with its being an out-of-phase combination of these two internal coordinates.

The large isotopic shifts observed in the $1581-\mathrm{cm}^{-1}$ mode upon ${ }^{13} \mathrm{C}$-substitution at C_{13} and C_{14} indicate that this mode carries approximately one-third of the $\mathrm{C}_{13}=\mathrm{C}_{14}$ stretch character. In the $14-{ }^{13} \mathrm{C}$ derivative, this line shifts $8 \mathrm{~cm}^{-1}$ to $1573 \mathrm{~cm}^{-1}$, while in the $13-{ }^{13} \mathrm{C}$ derivative a $9-\mathrm{cm}^{-1}$ shift to $1572 \mathrm{~cm}^{-1}$ is observed. The only other ${ }^{13} \mathrm{C}$-substitutions which appear to shift this line are at C_{5} and C_{6} and this will be discussed below. The $\mathrm{C}_{13}=\mathrm{C}_{14}$ stretch is calculated at $1580 \mathrm{~cm}^{-1}$ as an antisymmetric combination with the $\mathrm{C}_{9}=\mathrm{C}_{10}$ and $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretches. The calculation reproduces the shifts in the $13-$ and $14-{ }^{13} \mathrm{C}$ derivatives, and also in the 5 - and $6-{ }^{13} \mathrm{C}$ derivatives. The intensity increase of the $\sim 1572-\mathrm{cm}^{-1}$ line in the 13 - and $14-{ }^{13} \mathrm{C}$ spectra is probably due to an increase in $\mathrm{C}_{11}=\mathrm{C}_{12}$ and $\mathrm{C}_{9}=\mathrm{C}_{10}$ character in the downshifted normal mode. The contribution of these stretches to the $1572-\mathrm{cm}^{-1}$ mode is calculated to increase upon ${ }^{13} \mathrm{C}$-substitution.
Assignment of the modes containing $\mathrm{C}_{7}=\mathrm{C}_{8}$ and $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretch character is more difficult since only small shifts of the native BR_{568} lines are observed in the $5-, 6$-, $7-$, or $8-{ }^{13} \mathrm{C}$ derivatives. In 7 - and $8-{ }^{13} \mathrm{C}-\mathrm{BR}_{568}$ the $1600-\mathrm{cm}^{-1}$ line shifts down slightly in frequency ($2-8 \mathrm{~cm}^{-1}$) and loses intensity, while in the [5- and $6-{ }^{13} \mathrm{C}$] derivatives the $1581-\mathrm{cm}^{-1}$ line apparently shifts $u p$ in frequency $\sim 6 \mathrm{~cm}^{-1}$. In addition, a shoulder appears at $1563 \mathrm{~cm}^{-1}$

Table III, Observed and Calculated $\mathrm{C}=\mathrm{C}$ Stretches in ${ }^{13} \mathrm{C}$-Substituted BR_{568}

native	$1640^{a}(8)^{b} / 1639^{c}$	1600 (4)/1606	-/1598	1581 (5)/1580	1550 (1)	1533 (4)/1534	1527 (78)/1528	
$15-\left[{ }^{13} \mathrm{C}\right]$	1623 (5)/1619	1600 (2)/1602	-/1597	1581 (4)/1576	1544 (8)	1531 (19)/1534	1526 (62)/1527	$26^{d} / 30^{\text {e }}$
$14-\left[{ }^{13} \mathrm{C}\right]$	1639 (8)/1638	1599 (6)/1604	-/1597	1573 (9)/1564	1543 (14)	1530 (9)/1530	1519 (54)/1523	28/29
$14,15-\left[{ }^{13} \mathrm{C}\right.$	1622 (6)/1616	1599 (3)/1601	-/1596	1572 (11)/1562	1544 (14)	1526 (13)/1529	1517 (53)/1520	51/61
13-[${ }^{13} \mathrm{C}$]	1639 (8)/1636	1599 (4)/1604	-/1597	1572 (1)/1568	1545 (3)	1528 (12)/1533	1520 (57)/1525	28/22
12-[$\left.{ }^{13} \mathrm{C}\right]$	1640 (10)/1638	1599 (4)/1605	-/1597	1581 (8)/1580	1543 (14)	1526 (6)/1533	1520 (58)/1508	22/24
11-[$\left.{ }^{13} \mathrm{C}\right]$	1639 (9)/1639	1597 (8)/1606	-/1596	1581 (4)/1579	1542 (10)	1522 (12)/1534	1520 (57)/1513	30/18
10-[$\left.{ }^{13} \mathrm{C}\right]$	1640 (11)/1639	1598 (7)/1606	-/1595	1581 (1)/1577	1545 (10)	1521 (10)/1513	1520 (61)/1530	26/25
10,11-[$\left.{ }^{13} \mathrm{C}\right]$	1638 (9)/1639	1593 (16)/1606	-/1594	1581 (1)/1575	1544 (4)	1520 (16)/1517	1514 (54)/1509	41/45
9-[$\left.{ }^{13} \mathrm{C}\right]$	1640 (9)/1639	1600 (5)/1605	-/1596	1580 (3)/1579	1544 (14)	1526 (7)/1516	1522 (62)/1529	
$8-\left[{ }^{13} \mathrm{C}\right]$	1641 (8)/1639	-/1574	1598 (1)/1598	1582 (6)/1587	1540 (3)	1532 (6)/1534	1525 (76)/1526	11/27
7-[${ }^{13} \mathrm{C}$]	1641 (10)/1639	-/1576	1592 (2)/1600	1583 (9)/1587	1554 (10)	1531 (9)/1534	1524 (60)/1526	-2/23
6-[$\left.{ }^{[13} \mathrm{C}\right]$	1641 (9)/1639	1599 (4)/1605	1563 (6)/1564	1587 (4)/1587	1541 (6)	1531 (8)/1534	1526 (63)/1526	6/30
5-[$\left.{ }^{3} \mathrm{C}\right]$	1641 (9)/1639	1600 (2)/1605	-/1564	1586 (2)/1587	1545 (5)	1533 (15)/1534	1527 (67)/1526	$-1 / 30$

[^3]

Figure 2. Resonance Raman spectra of native $\mathrm{BR}_{568}(\mathrm{~A})$ and its ${ }^{15} \mathrm{~N}(\mathrm{~B}), 15-{ }^{13} \mathrm{C}(\mathrm{C}), 14-{ }^{13} \mathrm{C}(\mathrm{D}), 14,15-{ }^{13} \mathrm{C}(\mathrm{E}), 13-{ }^{-13} \mathrm{C}(\mathrm{F}), 12-{ }^{13} \mathrm{C}(\mathrm{G}), 11-{ }^{13} \mathrm{C}(\mathrm{H})$, $10-{ }^{13} \mathrm{C}(\mathrm{I}), 10,11^{-13} \mathrm{C}(\mathrm{J}), 9-{ }^{-13} \mathrm{C}(\mathrm{K}), 8-{ }^{13} \mathrm{C}(\mathrm{L}), 7-{ }^{13} \mathrm{C}(\mathrm{M}), 6-{ }^{13} \mathrm{C}(\mathrm{N})$, and $5-{ }^{13} \mathrm{C}(\mathrm{O})$ derivatives.
in the $6-{ }^{13} \mathrm{C}$ spectrum, The $1563-\mathrm{cm}^{-1}$ line is clearly resolved in $6-{ }^{13} \mathrm{C}, 15-\mathrm{D}-\mathrm{BR}_{568}$ (data not shown) where the intense $1527-\mathrm{cm}^{-1}$ line shifts to $1522 \mathrm{~cm}^{-1} .{ }^{16}$ An upshift of the $1581-\mathrm{cm}^{-1}$ mode upon ${ }^{13} \mathrm{C}$-substitution might be expected if this line is coupled with an additional vibration which is shifted by ${ }^{13} \mathrm{C}$-substitution from above to below $1581 \mathrm{~cm}^{-1}$. The shift of the $1581-\mathrm{cm}^{-1}$ line in the 5 - and $6-{ }^{13} \mathrm{C}$ spectra, therefore, suggests that most of the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretch character is above $1581 \mathrm{~cm}^{-1}$ in native BR_{568} and that it shifts to $\sim 1563 \mathrm{~cm}^{-1}$ in the $\left[6{ }^{-13} \mathrm{C}\right]$ derivative. The $\mathrm{C}_{5}=\mathrm{C}_{6}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ force constants were adjusted to place the $\mathrm{C}_{5}=\mathrm{C}_{6}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches at 1598 and $1606 \mathrm{~cm}^{-1}$, nearly degenerate and strongly mixed, which correctly reproduces both the frequency of the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretch in the $6{ }^{-13} \mathrm{C}$ derivative ($1564 \mathrm{~cm}^{-1}$ calculated, 1563 cm^{-1} observed) and the upshift of the $1581-\mathrm{cm}^{-1}$ mode in this derivative ($7 \mathrm{~cm}^{-1}$ calculated, $6 \mathrm{~cm}^{-1}$ observed). Assignment of the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretch near $1600 \mathrm{~cm}^{-1}$ also helps explain the apparent insensitivity of the Raman spectrum to $7-$ and $8-{ }^{13} \mathrm{C}$ substitution. The weak line remaining near $1600 \mathrm{~cm}^{-1}$ in these derivatives may be the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretching mode which appears only when the $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretching mode is shifted to lower frequency. Further-
more, the sum of the ${ }^{13} \mathrm{C}$ shifts of the $\mathrm{C}=\mathrm{C}$ stretches in the $5-$, 6 -, 7-, and $8-{ }^{13} \mathrm{C}$ derivatives (Table III) argues that the observed vibrational lines in the BR_{568} spectrum are insufficient to produce the $\sim 30-\mathrm{cm}^{-1}$ shift expected for a single ${ }^{13} \mathrm{C}$-substitution so a $\mathrm{C}=\mathrm{C}$ fundamental must have low intensity in the native spectrum.
In all-trans-retinal, both the $\mathrm{C}_{7}=\mathrm{C}_{8}$ and $\mathrm{C}_{5}=\mathrm{C}_{6}$ modes are observed and are assigned at 1611 and $1597 \mathrm{~cm}^{-1}$, respectively, while in the protonated Schiff base only the $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretching mode is observed at $1612 \mathrm{~cm}^{-1}$. The similar frequencies of these stretches in both the 6 -s-cis model compounds and $6-s$-trans- BR_{568} apparently arises from a near-cancellation of the electronic and geometric effects of $\mathrm{C}_{6}-\mathrm{C}_{7}$ isomerization. In the $6-s$-cis conformation, steric interactions force a $30-70^{\circ}$ twist about the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond ${ }^{24}$ tending to isolate the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretch electronically from the rest of the conjugated chain. The stretch-stretch interaction constants involving the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretch were therefore made much smaller than those involving the other double bond

[^4]

Figure 3. Mass-weighted atomic displacements for the $1528-\mathrm{cm}^{-1}$ (A) and $1534-\mathrm{cm}^{-1}$ (B) ethylenic stretching vibrations. The in-phase motion of the chain carbon atoms in the $1528-\mathrm{cm}^{-1}$ mode produces the intense ethylenic line observed in the native BR_{568} spectrum.

Table IV. Calculated Frequencies and Assignments for N-D-Substituted BR_{568}

obsd	calcd	description ${ }^{\text {a }}$
1624	1626	$\begin{gathered} 0.32(\mathrm{C}=\mathrm{N})-0.13(13=14)-0.09(14-15)+ \\ 0.47(15 \mathrm{H})-0.34(\mathrm{ND}) \end{gathered}$
	1605	$\begin{aligned} & 0.29(7=8)-0.13(5=6)-0.11(13=14)-0.15(8-9)- \\ & 0.65(8 \mathrm{H})+0.44(7 \mathrm{H}) \end{aligned}$
1597	1597	$\begin{aligned} & 0.31(5=6)+0.14(7=8)-0.11(9=10)+ \\ & 0.09(11=12)-0.14(6-7) \end{aligned}$
1577	1580	$\begin{aligned} & 0.27(13=14)-0.19(5=6)-0.12(9=10)- \\ & 0.16(14-15)-0.56(14 \mathrm{H}) \end{aligned}$
	1534	$\begin{aligned} & 0.31(9=10)-0.12(11=12)-0.09(14-15)- \\ & 0.46(10 \mathrm{H}) \end{aligned}$
1528	1528	$\begin{aligned} & 0.29(11=12)+0.10(7=8)+0.08(13=14)+ \\ & 0.08(5=6)-0.17(12-13)-0.14(10-11)+ \\ & 0.66(12 \mathrm{H})-0.65(11 \mathrm{H}) \end{aligned}$
	$\begin{aligned} & 1393 \\ & 1381 \end{aligned}$	$\begin{aligned} & 0.63(10 \mathrm{H})-0.54(8 \mathrm{H})-0.52(7 \mathrm{H})-0.10\left(9-\mathrm{CH}_{3}\right) \\ & 0.50(14 \mathrm{H})-0.07\left(13-\mathrm{CH}_{3}\right) \end{aligned}$
1345	1336	$0.57(15 \mathrm{H})-0.49(7 \mathrm{H})$
1332	1324	$0.47(8 \mathrm{H})+0.45(7 \mathrm{H})$
1322	1313	$0.41(12 \mathrm{H})+0.39(11 \mathrm{H})+0.32(8 \mathrm{H})-0.27(7 \mathrm{H})$
1305	1303	$0.62(7 \mathrm{H})-0.57(8 \mathrm{H})$
1274	1277	$0.82(11 \mathrm{H})-0.28(12 \mathrm{H})+0.30(10 \mathrm{H})-0.17(11=12)$
1248	1262	$\begin{aligned} & 0.12(12-13)+0.10(14-15)-0.63(14 \mathrm{H})- \\ & 0.06\left(13-\mathrm{CH}_{3}\right) \end{aligned}$
1253	1249	0.82 (lysine rock) - 0.43 (15H)
1214	1218	$\begin{aligned} & 0.18(8-9)+0.08(12-13)-0.12(14-15)- \\ & 0.08\left(9-\mathrm{CH}_{3}\right) \end{aligned}$
1201	1204	$0.24(14-15)+0.15(8-9)$
1171	1170	$0.30(10-11)-0.08(8-9)$
	1124	0.32(6-7)
977	974	0.63(ND)

${ }^{a}$ See footnotes to Table II.
stretches in the retinal and PSB force fields. If the same stretch-stretch interaction constants are transferred to the $6-s$-trans geometry, the altered kinetic coupling through the s-trans bond causes the $\mathrm{C}_{5}=\mathrm{C}_{6}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches to couple strongly and split far apart in frequency. However, there is probably little twist about the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond in the 6 -s-trans conformer, so the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretch should be more fully conjugated with the rest of the chain, and the interaction constants involving this stretch should be similar to those for the other double bond stretches. When these changes in the force field are made, the $\mathrm{C}_{5}=\mathrm{C}_{6}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches become only weakly coupled and nearly degenerate in

Table V, Calculated Frequencies and Assignments for 15-D-Substituted BR_{568}

obsd	calcd	description ${ }^{\text {a }}$
1629	1632	$0.32(\mathrm{C}=\mathrm{N})-0.16(13=14)-0.10(\mathrm{~N}-\mathrm{C})-0.56(\mathrm{NH})$
	1604	$\begin{aligned} & 0.31(7=8)-0.13(5=6)-0.07(13=14)-0.15(8-9)- \\ & 0.67(8 \mathrm{H}) \end{aligned}$
1601	1598	$0.32(5=6)+0.12(7=8)-0.11(9=10)+0.44(7 \mathrm{H})$
1580	1575	$\begin{aligned} & 0.26(13=14)-0.18(5=6)-0.15(9=10)- \\ & 0.17(14-15)-0.55(14 \mathrm{H}) \end{aligned}$
	1533	$0.26(9=10)-0.22(11=12)-0.47(10 \mathrm{H})$
1522	1526	$\begin{aligned} & 0.22(11=12)+0.17(9=10)+0.15(13=14)+ \\ & 0.09(5=6)+0.60(11 \mathrm{H}) \end{aligned}$
	1394	$0.62(10 \mathrm{H})-0.55(8 \mathrm{H})-0.55(7 \mathrm{H})$
	1382	$0.53(14 \mathrm{H})-0.08\left(13-\mathrm{CH}_{3}\right)$
1349	1345	$0.98(\mathrm{NH})+0.15(12-13)$
1332	1327	$0.64(7 \mathrm{H})+0.42(8 \mathrm{H})+0.47(14 \mathrm{H})$
1323	1319	$0.45(12 \mathrm{H})+0.36(11 \mathrm{H})+0.37(8 \mathrm{H})+0.21(8-9)$
1304	1303	$0.66(7 \mathrm{H})-0.61(8 \mathrm{H})$
1271	1277	$0.82(11 \mathrm{H})-0.31(12 \mathrm{H})$
1271	1271	0.83 (lysine rock) $-0.13(14-15)$
	1248	$\begin{aligned} & 0.17(12-13)+0.02(14-15)-0.74(14 \mathrm{H})- \\ & 0.05\left(13-\mathrm{CH}_{3}\right) \end{aligned}$
1215	1220	$0.16(14-15)-0.15(8-9)+0.06\left(9-\mathrm{CH}_{3}\right)$
1215	1208	$0.17(8-9)+0.19(14-15)-0.08\left(9-\mathrm{CH}_{3}\right)$
1171	1170	$0.30(10-11)$
	1124	0.31(6-7)
974	981	0.76(15D)

${ }^{a}$ See footnotes to Table II.

Table VI. Calculated Frequencies and Assignments for 14-D-Substituted BR_{568}

obsd	calcd	description a
1636	1639	$0.34(\mathrm{C}=\mathrm{N})-0.13(13=14)-0.10(\mathrm{~N}-\mathrm{C})-$
		$0.56(\mathrm{NH})+0.47(15 \mathrm{H})$
	1604	$0.33(7=8)-0.09(5=6)-0.11(13=14)-$
1598	1597	$0.35(5=6)+0.07(7=8)-0.12(9=10)-$
		$0.13(6-7)$
1574	1568	$0.26(13=14)-0.20(9=10)-0.16(5=6)$
	1530	$0.31(11=12)-0.12(9=10)-0.17(12-13)+$
		$0.54(11 \mathrm{H})$
1521	1524	$0.25(9=10)+0.23(13=14)-0.30(10 \mathrm{H})$
	1393	$0.66(10 \mathrm{H})-0.56(8 \mathrm{H})-0.56(7 \mathrm{H})$
1348	1354	$1.1(\mathrm{NH})+0.49(15 \mathrm{H})+0.05(12-13)$
	1347	$0.49(15 \mathrm{H})-0.51(\mathrm{NH})-0.10(12-13)$
1317	1331	$0.20(12-13)-0.45(\mathrm{NH})-0.15(13-\mathrm{CH} 3)$
	1322	$0.45(7 \mathrm{H})+0.40(8 \mathrm{H})+0.46(10 \mathrm{H})$
1307	1314	$0.49(12 \mathrm{H})+0.47(11 \mathrm{H})-0.30(7 \mathrm{H})-0.31(8 \mathrm{H})$
1297	1302	$0.60(7 \mathrm{H})-0.59(8 \mathrm{H})$
1272	1275	$0.76(11 \mathrm{H})-0.45(12 \mathrm{H})$
	1251	$0.92(1 \mathrm{ysine} \mathrm{rock})+0.01(12-13)-0.02(14-15)$
1216	1217	$0.22(8-9)-0.07(9-\mathrm{CH})$
1193	1195	$0.26(14-15)$
1174	1171	$0.30(10-11)-0.09(8-9)$
	1124	$0.32(6=7)$
$972 / 984$	973	$0.60(14 \mathrm{D})$

${ }^{a}$ See footnotes to Table II.
frequency, consistent with the experimental observations.
Finally, assignment of the $\mathrm{C}_{5}==\mathrm{C}_{6}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretching modes near $1600 \mathrm{~cm}^{-1}$ implies that the vibrational line observed at 1550 cm^{-1} is not a fundamental. ${ }^{25}$ Our only reservation with this assignment is that this mode is observed with moderate intensity at $1544 \mathrm{~cm}^{-1}$ in the $11,12-\mathrm{D}_{2}-\mathrm{BR}_{568}$ spectrum (Figure 4 H). Since combination bands are expected to be weak in the Raman spectrum, the intensity of the $1544-\mathrm{cm}^{-1}$ line must result from a combination of an intense mode between ~ 1000 and $1500 \mathrm{~cm}^{-1}$ and a much weaker mode below $\sim 600 \mathrm{~cm}^{-1}$, or from mixing with nearby fundamentals.
(25) To verify that the $1550-\mathrm{cm}^{-1}$ line does not arise from photolysis of the BR_{568} pigment, spectra were obtained of the $12,20-\mathrm{D}_{4}$ derivative (in which the $1550-\mathrm{cm}^{-1}$ mode is clearly resolved) with the photoalteration parameter (F) ranging from 0.01 to 0.3 . No changes in relative intensity were observed. We also note that in the $14-\left[{ }^{13} \mathrm{C}\right]$ derivative of all-irans-retinal, ${ }^{29} \mathrm{a}$ band is observed at $1552 \mathrm{~cm}^{-1}$ which is assigned as a combination band.

Table VII. Calculated Frequencies and Assignments for 12-D-Substituted BR $_{568}$

obsd	calcd	description ${ }^{a}$
1638	1638	$\begin{array}{l}0.35(\mathrm{C}=\mathrm{N})-0.12(13=14)-0.10(\mathrm{~N}-\mathrm{C})-0.56(\mathrm{NH}) \\ +0.48(15 \mathrm{H})\end{array}$
	1605	$\begin{array}{l}0.31(7=8)-0.12(5=6)-0.12(13=14)-0.15(8-9) \\ 1598 \\ 1598\end{array}$
1580	1579	$0.32(5=6)+0.13(7=8)-0.15(9=10)-0.13(6-7)$
	1533	$0.32(9=14)-0.19(5=6)-0.11(9=10)-0.56(14 \mathrm{H})$
		$0.46(10 \mathrm{H})$
1513	1510	$0.32(11=12)+0.09(7=8)-0.20(12-13)+$
	1388	$0.65(11 \mathrm{H})$
	1378	$0.49(14 \mathrm{H})-0.13(12-13)-0.08\left(13-\mathrm{CH}_{3}\right)$

${ }^{a}$ See footnotes to Table II.
Table VIII. Calculated Frequencies and Assignments for 11-D-Substituted BR $_{568}$

obsd	calcd	description ${ }^{\text {a }}$
1638	1639	$\begin{aligned} & 0.35(\mathrm{C}=\mathrm{N})-0.13(13=14)-0.10(\mathrm{~N}-\mathrm{C})-0.56(\mathrm{NH}) \\ & \quad+0.47(15 \mathrm{H}) \end{aligned}$
	1606	$0.31(7=8)-0.11(5=6)-0.12(13=14)-0.16(8-9)$
1596	1596	$0.34(5=6)+0.12(7=8)-0.12(9=10)-0.13(6-7)$
1583	1578	$0.28(13=14)-0.14(5=6)-0.12(9=10)-0.56(14 \mathrm{H})$
	1534	$\begin{aligned} & 0.31(9=10)+0.18(13=14)-0.13(11=12)- \\ & \quad 0.49(10 \mathrm{H}) \end{aligned}$
1515	1511	$\begin{aligned} & 0.30(11=12)+0.11(9=10)+0.07(5=6)+ \\ & 0.07(7=8)-0.67(12 \mathrm{H}) \end{aligned}$
	1390	$0.71(10 \mathrm{H})-0.50(8 \mathrm{H})-0.47(7 \mathrm{H})$
	1381	$0.52(14 \mathrm{H})-0.08\left(13-\mathrm{CH}_{3}\right)$
1348	1351	$0.99(\mathrm{NH})+0.13(12-13)$
	1334	$0.90(15 \mathrm{H})+0.14(12-13)$
1328	1324	$0.54(7 \mathrm{H})+0.52(8 \mathrm{H})+0.56(10 \mathrm{H})$
1319	1306	$0.70(7 \mathrm{H})-0.56(8 \mathrm{H})$
1302	1293	$0.70(12 \mathrm{H})$
1254	1255	0.78 (lysine rock) $-0.07(14-15)-0.06(12-13)$
	1244	$0.14(12-13)+0.67(14 \mathrm{H})-0.06\left(13-\mathrm{CH}_{3}\right)$
1209	1219	$\begin{aligned} & 0.19(8-9)-0.13(14-15)+0.08(12-13)- \\ & 0.08\left(9-\mathrm{CH}_{3}\right) \end{aligned}$
1201	1200	$0.26(14-15)+0.13(8-9)+0.06(10-11)$
1171	1186	$0.30(10-11)$
	1124	0.32(6-7)
960	974	0.60 (11D)

${ }^{a}$ See footnotes to Table II.
The normal mode character of the $\mathrm{C}=\mathrm{C}$ stretches indicated by the ${ }^{13} \mathrm{C}$ shifts is supported by shifts observed in the deuterium derivatives. The deuterium data are presented in Figure 4, and the normal mode frequencies are summarized in Tables IV-X. Kinetic coupling of the $\mathrm{C}=\mathrm{C}$ stretches with the CCH rocks produces normal modes which contain both $\mathrm{C}=\mathrm{C}$ stretch and CCH rock character. Deuteriation removes the coupling between the $\mathrm{C}=\mathrm{C}$ stretches and CCH rocks by lowering the frequency of the deuteriated rock from $1300-1400 \mathrm{~cm}^{-1}$ to $\sim 980 \mathrm{~cm}^{-1}$.

The $1527-\mathrm{cm}^{-1}$ line shifts to lower frequency upon deuteriation at positions $14,12,11,10,8$, and 7 when coupling of the CCH rocks with the associated $\mathrm{C}_{13}=\mathrm{C}_{14}, \mathrm{C}_{11}=\mathrm{C}_{12}, \mathrm{C}_{9}=\mathrm{C}_{10}$, and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches is removed. Deuteriation is such a large perturbation that it changes the character of the normal modes; the general trend is to increase the character of the deuteriated $\mathrm{C}=\mathrm{C}$ stretch in the downshifted mode while pushing the contribution of the other stretching coordinates into the higher frequency $\mathrm{C}=\mathrm{C}$

Table IX. Calculated Frequencies and Assignments for 10-D-Substituted BR $_{568}$

obsd	calcd	description
1641	1639	$0.35(\mathrm{C}=\mathrm{N})-0.13(13=14)-0.10(\mathrm{~N}-\mathrm{C})-0.56(\mathrm{NH})$ $+0.47(15 \mathrm{H})$
	1606	$0.31(7=8)-0.11(5=6)-0.12(13=14)-0.67(8 \mathrm{H})$ 1597 1595
1581	1577	$0.35(5=6)+0.11(7=8)-0.13(6-7)+0.44(7 \mathrm{H})$
1526	1531	$0.29(11=12)-0.12(5=6)-0.17(14-15)$
1520	1515	$0.31(9=10)+0.16(9=10)+0.59(11 \mathrm{H})-0.62(12 \mathrm{H})$
	1385	$0.61(14 \mathrm{H})-0.08\left(13-\mathrm{CH}_{3}\right)$
	1359	$0.65(7 \mathrm{H})+0.56(8 \mathrm{H})$
1348	1352	$0.99(\mathrm{NH})+0.12(12-13)$
	1337	$0.62(15 \mathrm{H})+0.29(\mathrm{NH})$
1321	1316	$0.61(12 \mathrm{H})+0.58(11 \mathrm{H})$
	1306	$0.70(8 \mathrm{H})-0.45(7 \mathrm{H})-0.11(8-9)$
1294	1292	$0.22(8-9)+0.40(7 \mathrm{H})-0.17(8 \mathrm{H})$
1272	1269	$0.62(11 \mathrm{H})-0.27(12 \mathrm{H})+0.13(8-9)$
	1252	$0.83(\mathrm{lysine}$ rock $)-0.07(14-15)-0.03(12-13)$
1237	1240	$0.13(12-13)+0.10(14-15)-0.73(14 \mathrm{H})$
1204	1204	$0.28(14-15)$
1165	1167	$0.28(10-11)$
	1124	$0.32(6-7)$
972	970	$0.53(10 \mathrm{D})$

${ }^{a}$ See footnotes to Table II.
Table X. Calculated Frequencies and Assignments for 8-D-Substituted BR $_{568}$

obsd	calcd	description a
1640	1639	$0.36(\mathrm{C}=\mathrm{N})-0.12(13=14)-0.56(\mathrm{NH})+0.47(15 \mathrm{H})$
1595	1598	$0.33(5=6)-0,13(9=10)$
	1589	$0.26(7=8)-0.22(13=14)$
1580	1577	$0.21(7=8)+0.19(13=14)$
	1532	$0.25(9=10)-0.24(11=12)$
1519	1525	$0.20(9=10)+0.19(11=12)+0.14(7=8)+$
	1386	$0.58(14 \mathrm{H})+0.27(10 \mathrm{H})$
	1378	$0.46(10 \mathrm{H})$
1346	1350	$1.07(\mathrm{NH})$
	1335	$0.84(15 \mathrm{H})+0.13(12-13)$
1316	1317	$0.97(7 \mathrm{H})+0.11(8-9)$
	1311	$0.56(12 \mathrm{H})+0.51(11 \mathrm{H})+0.17(8-9)$
1275	1277	$0.79(11 \mathrm{H})-0.35(12 \mathrm{H})$
1253	1255	$0.75(1 \mathrm{ysine}$ rock $)-0.08(14-15)-0.07(12-13)$
	1245	$0.13(12-13)+0.04(14-15)-0.07(8-9)$
1223	1227	$0.21(8-9)+0.07(12-13)-0.09\left(9-\mathrm{CH}_{3}\right)$
1202	1204	$0.27(14-15)+0.08(8-9)$
1169	1174	$0.29(10-11)-0.04(8-9)$
	1125	$0.33(6-7)$
980	9866	$0.35(8 \mathrm{D})$

${ }^{a}$ See footnotes to Table II.
fundamentals. In $14 \mathrm{D} \mathrm{BR}{ }_{568}$, the $1527-\mathrm{cm}^{-1}$ line shifts $6 \mathrm{~cm}^{-1}$ ($4 \mathrm{~cm}^{-1}$ calculated) to $1521 \mathrm{~cm}^{-1}$, reflecting the $\mathrm{C}_{13}=\mathrm{C}_{14}$ stretch character in the $1527-\mathrm{cm}^{-1}$ vibration. The shifted $\mathrm{C}=\mathrm{C}$ mode is calculated as a symmetric combination of the $\mathrm{C}_{13}=\mathrm{C}_{14}$ and $\mathrm{C}_{9}=\mathrm{C}_{10}$ stretches with a large increase in the $\mathrm{C}_{13}=\mathrm{C}_{14}$ coefficient (Table VI), $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch character is predicted to shift into the $1530-\mathrm{cm}^{-1}$ mode. Deuteriation at C_{12} shifts the $1527-\mathrm{cm}^{-1}$ mode to $1513 \mathrm{~cm}^{-1}$ ($1510 \mathrm{~cm}^{-1}$ calculated), This mode is predicted to be a symmetric combination of the $\mathrm{C}_{11}=\mathrm{C}_{12}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches. $\mathrm{C}_{11}=\mathrm{C}_{12}$ character is calculated to increase in the $1510-\mathrm{cm}^{-1}$ mode, while $\mathrm{C}_{13}=\mathrm{C}_{14}$ character shifts into the $1533-$ cm^{-1} mode. Similar shifts are observed and calculated for the 11 D derivative, confirming the contribution of $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch character in the $1527-\mathrm{cm}^{-1}$ vibration, Deuteriation of both the 11 and 12 positions produces a low-frequency mode at $1491 \mathrm{~cm}^{-1}$ which is calculated to be a nearly isolated $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch (results not shown). Significant intensity in this mode argues that the $\mathrm{C}_{11}=\mathrm{C}_{12}$ coordinate carries much of the intrinsic Raman intensity in BR_{568}. Deuteriation at C_{10} shifts the $1527-\mathrm{cm}^{-1}$ line to 1520 cm^{-1} ($1515 \mathrm{~cm}^{-1}$ calculated), while deuteriation at C_{8} shifts the $1527-\mathrm{cm}^{-1}$ mode to $1519 \mathrm{~cm}^{-1}$ ($1525 \mathrm{~cm}^{-1}$ calculated), These shifts confirm the contribution from the $\mathrm{C}_{9}=\mathrm{C}_{10}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches, respectively. Finally, the $1527-\mathrm{cm}^{-1}$ line shifts $5 \mathrm{~cm}^{-1}$ in 15-D-

Figure 4. Resonance Raman spectra of native $\mathrm{BR}_{568}(\mathrm{~A})$ and its $N-\mathrm{D}(\mathrm{B}), 15-\mathrm{D}(\mathrm{C}), 15, N-\mathrm{D}_{2}$ (D), 14-D (E), 12-D (F), 11-D (G), 11,12-D (H), 10-D (I), 8-D (J), 7-D (K), and 7,8- $\mathrm{D}_{2}(\mathrm{~L})$ derivatives.
BR_{568}, indicating that the $\mathrm{C}_{15} \mathrm{H}$ rock is weakly coupled with this mode.

The $1533-\mathrm{cm}^{-1}$ line shifts to $1514 \mathrm{~cm}^{-1}$ in $11,12-\mathrm{D}_{2}-\mathrm{BR}_{568}$, the only derivative in which this line is clearly resolved. The $1533-\mathrm{cm}^{-1}$ mode is calculated to shift only $4 \mathrm{~cm}^{-1}$ in this derivative, arguing that the predicted $\mathrm{C}_{11}=\mathrm{C}_{12}$ contribution to the mode is too low.

In 7-D-, 8 -D-, and $7,8-\mathrm{D}_{2}-\mathrm{BR}_{568}$, the $1600-\mathrm{cm}^{-1}$ line loses intensity and only a weak shoulder is observed at $\sim 1595 \mathrm{~cm}^{-1}$ corresponding to the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretching vibration. The $1598 . \mathrm{cm}^{-1}$ $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretch is calculated to shift only slightly in these derivatives, whereas the $1606-\mathrm{cm}^{-1} \mathrm{C}_{7}=\mathrm{C}_{8}$ stretch is calculated to shift more than $10 \mathrm{~cm}^{-1}$. These shifts support the assignments derived from the ${ }^{13} \mathrm{C}$ derivatives.
$\mathrm{C}=\mathbf{N}$ Stretch. The $1640-\mathrm{cm}^{-1}$ Schiff base mode is expected to be strongly coupled with the NH and $\mathrm{C}_{15} \mathrm{H}$ rocks. ${ }^{26}$ The $16-\mathrm{cm}^{-1}$ shift of the $1640-\mathrm{cm}^{-1}$ line to $1624 \mathrm{~cm}^{-1}$ in ND BR_{568} was first used to assign this line as the $\mathrm{C}=\mathrm{N}$ stretching vibration. ${ }^{27}$ A $11-\mathrm{cm}^{-1}$ shift of the $1640-\mathrm{cm}^{-1}$ line in $15-\mathrm{D}^{-\mathrm{BR}_{568}}$ subsequently demonstrated the $\mathrm{C}_{15} \mathrm{H}$ rock contribution. ${ }^{17}$ Our ND and 15D spectra (Figure 4, B and C) are in agreement with these results. The $\mathrm{C}=\mathrm{N}$ stretching component of the Schiff base mode is evident from the $17-\mathrm{cm}^{-1}$ shift when C_{15} is labeled with ${ }^{13} \mathrm{C}$ (Figure 2C)

[^5]

Figure 5. Mass-weighted atomic displacements for the Schiff base stretching mode.
and the $13-\mathrm{cm}^{-1}$ shift when the Schiff base nitrogen is labeled with ${ }^{15} \mathrm{~N}$ (Figure 2B). ${ }^{28}$ Refinement of the force field for the Schiff base moiety requires explicit consideration of the NH and $\mathrm{C}_{15} \mathrm{H}$ rocking coordinates since they contribute significantly to the Schiff base mode. Thus, it is first necessary to adjust the diagonal rocking force constants in order to place the NH and $\mathrm{C}_{15} \mathrm{H}$ rocking modes at their observed frequencies (1348 and $1345 \mathrm{~cm}^{-1}$, see below). The $1640-\mathrm{cm}^{-1}$ frequency and the ${ }^{13} \mathrm{C}_{15},{ }^{15} \mathrm{~N}, N-\mathrm{D}$, and $15-\mathrm{D}$ shifts

[^6]Table XI. ${ }^{13} \mathrm{C}$ Shifts of the $\mathrm{C}-\mathrm{C}$ Stretches in $\mathrm{BR}_{568}{ }^{a}$

	$\mathrm{C}_{10}-\mathrm{C}_{11}$	$\mathrm{C}_{14}-\mathrm{C}_{15}$	$\mathrm{C}_{8}-\mathrm{C}_{9}$	$\mathrm{C}_{12}-\mathrm{C}_{13}$	
native	1169 (1170)	1201 (1201)	1214 (1218)	1248 (1244)	1255 (1255)
15.13 C	-1 (-1)	-4 (-12)	$0(-1)$	-2 (-2)	-2 (-1)
14	-3 (-1)	-10(-14)	-1 (-2)	-2 (0)	-3 (-1)
14,15	-2 (-3)	-24 (-26)	-1 (-2)	-2 (-2)	-3 (-2)
13	-5 (-1)	-2 (-2)	-2 (-1)	-5 (-7)	-3 (-1)
12	0 (0)	-1 (-2)	-1 (0)	-1 (-2)	-1 (0)
11	-9 (-14)	-2 (-2)	0 (-1)	-1 (-1)	-2 (-1)
10	-12(-15)	$0(-1)$	0 (0)	-3 (0)	-2 (0)
10,11	-19 (-28)	-2 (-2)	-1 (-1)	-1 (-1)	-2 (-1)
9	-3 (-4)	-3 (-8)	-16(-7)	-2 (-1)	-2 (0)
8	0 (-1)	0 (-2)	-3(-2)	0 (0)	0 (0)
7	0 (-1)	0 (0)	0 (0)	- (0)	0 (0)
6	-1 (-1)	0 (0)	0 (0)	-1(0)	0 (0)

${ }^{a}$ Calculated ${ }^{13} \mathrm{C}$ shifts are in parentheses. All frequencies are in wavenumbers.
are then reproduced by adjusting the $\mathrm{C}=\mathrm{N}$ stretching force constant, as well as the rock-stretch interaction and Urey-Bradley constants. The calculated normal mode has large $\mathrm{C}_{15} \mathrm{H}$ and NH rocking coefficients (Table II) as illustrated by the atomic displacements for the Schiff base mode in Figure 5. The $\mathrm{C}=\mathrm{N}$ stretch is very weakly mixed with the lower frequency $\mathrm{C}=\mathrm{C}$ stretches as demonstrated by the $\leq 2-\mathrm{cm}^{-1}$ shift of the $1640-\mathrm{cm}^{-1}$ frequency upon ${ }^{13} \mathrm{C}$-substitution of the skeletal carbons other than on the $\mathrm{C}=\mathrm{N}$ moiety. In addition, ${ }^{13} \mathrm{C}=\mathrm{N}$ or $\mathrm{C}={ }^{15} \mathrm{~N}$ substitution does not produce shifts of more than $2-3 \mathrm{~cm}^{-1}$ in the observed ethylenic modes.
$\mathrm{C}-\mathrm{C}$ Stretches. The normal mode character of the $\mathrm{C}-\mathrm{C}$ stretching modes can be determined by specific labeling with ${ }^{13} \mathrm{C}$ and ${ }^{2} \mathrm{H}$. The observed ${ }^{13} \mathrm{C}$ shifts reveal the contributions of the individual $\mathrm{C}-\mathrm{C}$ stretching internal coordinates to each normal mode, while deuterium derivatives establish the extent of coupling of the $\mathrm{C}-\mathrm{C}$ stretching coordinates with the CCH in-plane rocks. The $\mathrm{C}-\mathrm{C}$ stretches are strongly coupled with the CCH rocks, resulting in normal modes which are highly mixed combinations of these two sets of internal coordinates. This stretch-rock coupling is manifested by the large upshift of the stretching vibrations when coupling with the rocks is removed by deuteriation. Nevertheless, it is useful to discuss these modes as "C-C stretches" both for convenience and because the $\mathrm{C}-\mathrm{C}$ internal coordinate character is often localized and can be accurately determined by ${ }^{13} \mathrm{C}$-substitution. In addition when the normal mode coefficients are examined it is important to note that the coefficients of the C - C internal coordinates are $\sim 1 / 6^{1 / 2}$ of the CCH rock coefficients having comparable potential energy contributions because of their different reduced mass. A summary of the observed ${ }^{13} \mathrm{C}$ shifts of the $\mathrm{C}-\mathrm{C}$ stretching modes is presented in Table XI.
$\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch character is found at $1201 \mathrm{~cm}^{-1}$ on the basis of a $4-\mathrm{cm}^{-1}$ shift of this mode in $15 .{ }^{13} \mathrm{C}-\mathrm{BR}_{568}$, a $10-\mathrm{cm}^{-1}$ shift in $14 .{ }^{13} \mathrm{C}-\mathrm{BR}_{568}$, and a $24-\mathrm{cm}^{-1}$ shift in the $14,15-{ }^{13} \mathrm{C}$ derivative. The insensitivity of the $1169-, 1214-, 1248-$, and $1255-\mathrm{cm}^{-1}$ modes to ${ }^{13} \mathrm{C}$-substitution at positions 14 and 15 indicates that in the $1170-1255-\mathrm{cm}^{-1} \mathrm{C}-\mathrm{C}$ stretch region, $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch character is found predominantly in the $1201-\mathrm{cm}^{-1}$ mode. Of course, $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretching character is also associated with normal modes involving the $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}_{13}=\mathrm{C}_{14}$ stretches, as well as the NH and $\mathrm{C}_{15} \mathrm{H}$ rocks (see Table II), so that the distribution of $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch character among all the normal modes of the molecule is complicated. However, if we focus on the distribution of $\mathrm{C}_{14}-\mathrm{C}_{15}$ character in the skeletal $\mathrm{C}-\mathrm{C}$ stretching modes, Table XI clearly shows that this coordinate is "localized" at $1201 \mathrm{~cm}^{-1}$. The $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch is calculated at $1201 \mathrm{~cm}^{-1}$ as a symmetric combination of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ and $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretches. The shifts of this mode in the various $14-{ }^{-13} \mathrm{C}$ and $15-{ }^{13} \mathrm{C}$ derivatives are in good agreement with the calculated shifts (Table XI).

The $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch is assigned at $1169 \mathrm{~cm}^{-1}$ on the basis of a $9-\mathrm{cm}^{-1}$ shift in $11 .{ }^{13} \mathrm{C}-\mathrm{BR}_{568}$, a $12-\mathrm{cm}^{-1}$ shift in $10{ }^{-13} \mathrm{C}-\mathrm{BR}_{568}$, and a $19-\mathrm{cm}^{-1}$ shift in the $10,11-{ }^{13} \mathrm{C}$ derivative. Since the $1201-$, 1214-, 1248-, and $1255-\mathrm{cm}^{-1}$ modes shift less than $4 \mathrm{~cm}^{-1}$ in these derivatives, it is clear that $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch character is quite localized at $1169 \mathrm{~cm}^{-1}$. The calculated shift for the $10,11-{ }^{13} \mathrm{C}$
derivative ($28 \mathrm{~cm}^{-1}$) is significantly larger than the observed shift of $19 \mathrm{~cm}^{-1}$. This discrepancy arises because the downshifted ${ }^{13} \mathrm{C}_{10}-{ }^{-13} \mathrm{C}_{11}$ stretch couples with the 1122 - and $1134-\mathrm{cm}^{-1}$ ionone ring modes and cannot express its full ${ }^{13} \mathrm{C}$ shift. Identical behavior has been observed and explained in the all-trans-PSB. ${ }^{9}$ Thus, this frequency error arises because the cyclohexene ring was not included in the calculation.
The $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch, assigned at $1214 \mathrm{~cm}^{-1}$, shifts $\sim 16 \mathrm{~cm}^{-1}$ in the $9-{ }^{13} \mathrm{C}$ derivative and $3 \mathrm{~cm}^{-1}$ when C_{8} is labeled. The difference in sensitivity of the $1214-\mathrm{cm}^{-1}$ line to ${ }^{13} \mathrm{C}$-substitution at C_{8} and C_{9} originates from the reduced motion of C_{8} in this normal mode. This results from coupling of the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch with the $\mathrm{C}_{9}-\mathrm{CH}_{3}$ stretch and the $\mathrm{C}_{10} \mathrm{H}$ rock as has been discussed in detail for all-trans-retinal ${ }^{8}$ and the all-trans-PSB. ${ }^{9}$

The $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch character is more delocalized so it is not possible to assign an individual normal mode as a localized $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch. $13-{ }^{13} \mathrm{C}$-Substitution results in a $5-\mathrm{cm}^{-1}$ shift of the $1169-\mathrm{cm}^{-1}$ line, a $5-\mathrm{cm}^{-1}$ shift of a line at $1248 \mathrm{~cm}^{-1}$, and $2-3-\mathrm{cm}^{-1}$ shifts of the $1201-, 1214-$, and $1255-\mathrm{cm}^{-1}$ lines. Similar behavior has been observed in all-trans-retinal and the all-trans-PSB. In the PSB, the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching coordinate makes a large contribution to the $1237-\mathrm{cm}^{-1}$ mode, consistent with its assignment as the highest frequency $\mathrm{C}-\mathrm{C}$ stretch in all-trans-retinal (1216 cm^{-1}). In bacteriorhodopsin, increased π-electron delocalization results in an upshift of the $\mathrm{C}_{10}-\mathrm{C}_{11}, \mathrm{C}_{8}-\mathrm{C}_{9}$, and $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretches by $\sim 10 \mathrm{~cm}^{-1}$ relative to the PSB. ${ }^{9}$ A similar shift of the " $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch" in BR_{568} would lead to an assignment at $\sim 1247 \mathrm{~cm}^{-1}$. In the native BR_{568} spectrum there are two lines near this frequency at 1248 and $1255 \mathrm{~cm}^{-1}$. Both lines are slightly sensitive to ${ }^{13} \mathrm{C}$-substitution at nearly all positions along the retinal chain (Table XI). However, the $1248-\mathrm{cm}^{-1}$ line clearly shifts away (5 cm^{-1}) from the more intense $1255-\mathrm{cm}^{-1}$ line only in the $13-{ }^{13} \mathrm{C}$ derivative (Figure 2 F , inset). Thus, we assign the $1248-\mathrm{cm}^{-1}$ line as the " $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch", although the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching coordinate is mixed with the $1255-\mathrm{cm}^{-1}$ mode as a result of its near degeneracy and also contributes to the $1169-\mathrm{cm}^{-1}$ mode. The assignment of the $1255-\mathrm{cm}^{-1}$ mode will be discussed below. Initial calculations on BR_{568} were unable to reproduce the $1248-\mathrm{cm}^{-1}$ frequency of the " $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch". Increasing the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching constant acted mainly to drive stretching character out of the normal mode without significantly raising its frequency. To raise the $\mathrm{C}_{12}-\mathrm{C}_{13}$ frequency in the BR_{568} calculation, we have increased the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching constant as well as the $\mathrm{C}-\mathrm{CH}$ and $\mathrm{C}=\mathrm{CH}$ bending constants, thereby influencing both the stretching and rocking components in the mode. The $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch is calculated at $1244 \mathrm{~cm}^{-1}$ with large contributions from the $\mathrm{C}_{14} \mathrm{H}$ and lysine CH_{2} rocking coordinates. The vibrational calculation is able to reproduce the shifts observed in the 1170-$1250-\mathrm{cm}^{-1}$ region of the $13-{ }^{13} \mathrm{C}-\mathrm{BR}_{568}$ spectrum with the exception of the $5-\mathrm{cm}^{-1}$ shift observed in the $1169-\mathrm{cm}^{-1}$ mode ($1 \mathrm{~cm}^{-1}$ calculated).

Assignment of the $\mathrm{C}_{6}-\mathrm{C}_{7}$ stretch in BR_{568} is facilitated by comparison with all-trans-retinal. In ATR the $\mathrm{C}_{6}-\mathrm{C}_{7}$ stretch is at $1174 \mathrm{~cm}^{-1}$ and it shifts $4 \mathrm{~cm}^{-1}$ in the $6{ }^{-13} \mathrm{C}$ and $2 \mathrm{~cm}^{-1}$ in the $7-{ }^{13} \mathrm{C}$ derivative. ${ }^{29}$ The small shifts observed in ATR apparently
result from coupling of the $\mathrm{C}_{6}-\mathrm{C}_{7}$ stretch with the stretching vibrations of the cyclohexene ring which serves to distribute $\mathrm{C}_{6}-\mathrm{C}_{7}$ stretch character into a number of normal modes. This is consistent with the observation that the $1174-\mathrm{cm}^{-1}$ line in ATR is sensitive to modifications at C_{5} of the cyclohexene ring such as demethylation. ${ }^{29}$ In BR_{568}, a line is observed at $1174 \mathrm{~cm}^{-1}$ (clearly resolved at $1173 \mathrm{~cm}^{-1}$ in the $10,11{ }^{13} \mathrm{C}$ spectrum, Figure 2J). However, this mode does not shift in the 6 - or $7{ }^{13} \mathrm{C}$ derivatives (as determined by peak fitting). The fingerprint line which is most sensitive to ${ }^{13} \mathrm{C}$-substitution at C_{6} and C_{7} is the $1122-\mathrm{cm}^{-1}$ mode This line shifts $7 \mathrm{~cm}^{-1}$ in the $6-{ }^{13} \mathrm{C}$ derivative and $3 \mathrm{~cm}^{-1}$ in the $7 .{ }^{13} \mathrm{C}$ derivative. A weak line at this frequency is observed in both ATR and β-ionone where it is assigned as a vibration of the cyclohexene ring. Thus, we are tentatively assigning the " $\mathrm{C}_{6}-\mathrm{C}_{7}$ stretch" at $1122 \mathrm{~cm}^{-1}$, although it appears likely that the $\mathrm{C}_{6}-\mathrm{C}_{7}$ stretch is not localized, but rather contributes to a number of modes. This assignment is supported by QCFF calculations on β-ionone. In $6-s$-cis- β-ionone, the $\mathrm{C}_{6}-\mathrm{C}_{7}$ stretch is localized in a mode at $1175 \mathrm{~cm}^{-1}$ and contributes to a ring mode (the gem methyl rock) at $1140 \mathrm{~cm}^{-1}$. In the $6-s$-trans geometry, the $\mathrm{C}_{6}-\mathrm{C}_{7}$ character splits into a mode at $1203 \mathrm{~cm}^{-1}$ in combination with the $\mathrm{C}_{1}-\mathrm{C}_{6}$ stretch and a mode at $1168 \mathrm{~cm}^{-1}$, which has contributions from the $\mathrm{C}_{4}-\mathrm{C}_{5}$ stretch. The contribution of $\mathrm{C}_{6}-\mathrm{C}_{7}$ character to the ring mode at $1140 \mathrm{~cm}^{-1}$ also increases in the 6 -s-trans geometry. This suggests that the sensitivity of the $1122-\mathrm{cm}^{-1}$ ring mode to ${ }^{13} \mathrm{C}_{6}$ - and ${ }^{13} \mathrm{C}_{7}$-substitution in BR_{568} may be a direct result of the 6 -s-trans structure.

Vibrational analysis of the deuterium shifts of the $\mathrm{C}-\mathrm{C}$ stretching modes is important for understanding the interactions between the in-plane hydrogen rocks and the $\mathrm{C}-\mathrm{C}$ stretches, and it also aids in the normal mode assignments. We begin by noting that the $\mathrm{C}-\mathrm{C}$ stretching region of BR_{568} is insensitive to deuteriation of the Schiff base nitrogen (Figure 4B, Table IV). In particular, no change is observed in the frequency of the $1201-\mathrm{cm}^{-1}$ $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretching mode. We argued previously that N -deuteriation would not significantly shift the $\mathrm{C}_{14}-\mathrm{C}_{15}$ frequency if the $\mathrm{C}=\mathrm{N}$ bond were in the trans (or anti) configuration. ${ }^{22 \mathrm{a}}$ The present calculation where the entire retinal chromophore is considered similarly predicts a small ($3 \mathrm{~cm}^{-1}$) ND induced shift of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretching mode for the $\mathrm{C}_{15}=\mathrm{N}$ anti geometry.

In contrast to the ND spectrum, deuteriation at C_{15} has pronounced effects on the $\mathrm{C}-\mathrm{C}$ stretches (Figure 4C, Table V). 15-D substitution results in increased intensity at 1215 and $1271 \mathrm{~cm}^{-1}$ and loss of intensity at 1201 and $1255 \mathrm{~cm}^{-1}$. An increase of intensity at $1215 \mathrm{~cm}^{-1}$ is in agreement with a calculated shift of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch from 1201 to $1220 \mathrm{~cm}^{-1}$. To account for intensity loss at $1255 \mathrm{~cm}^{-1}$ and increased intensity at $1271 \mathrm{~cm}^{-1}$, it is necessary to examine other vibrations which may be affected by 15 -deuteriation. In the all-trans-PSB, 15 -deuteriation resulted in loss of intensity in the $1237-\mathrm{cm}^{-1}$ " $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch" due to a drop in the contribution of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretching coordinate to the normal mode. ${ }^{9}$ In BR_{568}, an analogous loss of $\mathrm{C}_{14}-\mathrm{C}_{15}$ character may explain the loss of intensity of the weak $1248-\mathrm{cm}^{-1}$ shoulder. However, the 15-D-induced shifts in bacteriorhodopsin appear more complicated; two additional vibrations at 1255 and $1271 \mathrm{~cm}^{-1}$ undergo changes in intensity. The initial explanation for the loss of intensity at $1255 \mathrm{~cm}^{-1}$ was the assignment of this vibration as the $\mathrm{C}_{15} \mathrm{H}$ in-plane rock. ${ }^{30}$ However, this can be excluded on the basis of the clear assignment of the $\mathrm{C}_{15} \mathrm{H}$ rock at $1345 \mathrm{~cm}^{-1}$ (see CCH rocks below). Alternatively, the $1255-\mathrm{cm}^{-1}$ mode may be assigned to an in-plane rocking vibration of the methylene protons attached to the ϵ-carbon of lysine. This mode is calculated at $1255 \mathrm{~cm}^{-1}$ (see Table II) with significant contributions from the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch and the $\mathrm{C}_{15} \mathrm{H}$ rock, and it is predicted to shift to $1271 \mathrm{~cm}^{-1}$ upon 15 -deuteriation. The ly-sine- CH_{2} rock is found at $1311 \mathrm{~cm}^{-1}$ in QCFF- π calculations on the all-trans-PSB, indicating that its assignment at $1255 \mathrm{~cm}^{-1}$

[^7]

Figure 6. Raman spectra of the all-trans-retinal protonated Schiff base (A) and its $12-\mathrm{D}(\mathrm{B}), 11-\mathrm{D}(\mathrm{C}), 11,12-\mathrm{D}_{2}(\mathrm{D})$, and $10-\mathrm{D}(\mathrm{E})$ derivatives.
in BR_{568} is reasonable. Additional support for this assignment comes from Raman spectra of the CD_{2} derivative of the all-trans-PSB. ${ }^{16}$ Although the $\epsilon-\mathrm{CH}_{2}$ vibration is not observed in the PSB spectrum, the $1345-\mathrm{cm}^{-1} \mathrm{C}_{15} \mathrm{H}$ rock drops $6 \mathrm{~cm}^{-1}$ and gains intensity in the CD_{2} PSB spectrum. The downshift of this mode indicates that the lysine- CH_{2} and $\mathrm{C}_{15} \mathrm{H}$ rocks are coupled and that the lysine $-\mathrm{CH}_{2}$ rocking mode is below $1345 \mathrm{~cm}^{-1}$. One other normal mode which may be present at $\sim 1255 \mathrm{~cm}^{-1}$ is a cyclohexene ring vibration which is observed as an intense Raman line at $1254 \mathrm{~cm}^{-1}$ in β-ionone and as a weak line in all-trans-retinal ${ }^{8}$ and its unprotonated and protonated Schiff bases. ${ }^{9}$ However, since this line would not be expected to be influenced by deuteriation at the Schiff base, we are assigning the $1255-\mathrm{cm}^{-1}$ mode in BR_{568} as the in-plane rock of the lysine- CH_{2} group.

The spectrum of 14-D- BR_{568} is shown in Figure 4 E and the calculated normal modes are presented in Table VI. Previous studies of retinals have shown that the $\mathrm{C}_{14} \mathrm{H}$ rock is strongly coupled with the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch. ${ }^{29}$ Deuteriation at C_{14} removes the rock-stretch coupling and in ATR results in an $83-\mathrm{cm}^{-1}$ upshift of $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching character. The $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch characteristically drops $6 \mathrm{~cm}^{-1}$ in the 14-D ATR derivative. In the $14-\mathrm{D}-\mathrm{BR}_{568}$ spectrum the intensity loss at 1248 - and $1255-\mathrm{cm}^{-1}$ lines probably results from an upshift of $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching character to $\sim 1317 \mathrm{~cm}^{-1}$. The $1248-\mathrm{cm}^{-1} \mathrm{C}_{12}-\mathrm{C}_{13}$ stretching mode is calculated to shift $77 \mathrm{~cm}^{-1}$ to $1331 \mathrm{~cm}^{-1}$ upon 14 -deuteriation, and the contribution of both the $\mathrm{C}_{12}-\mathrm{C}_{13}$ and $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretches to the $1255-\mathrm{cm}^{-1}$ mode drops dramatically. In addition, the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch shifts down $8 \mathrm{~cm}^{-1}\left(6 \mathrm{~cm}^{-1}\right.$ calculated) from 1201 to $1193 \mathrm{~cm}^{-1}$. Thus, the shifts observed in the 14-D derivative support the assignments of the $\mathrm{C}_{12}-\mathrm{C}_{13}$ and $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretches based on the observed ${ }^{13} \mathrm{C}$ shifts. To reproduce the $69-\mathrm{cm}^{-1}$ frequency shift of the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch upon 14-deuteriation, it was necessary to increase the ($\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{CH}_{3}$) interaction constant. When the all-trans-PSB force constant $(-0.14 \mathrm{mdyn} / \AA)$ is used, the $\mathrm{C}_{14} \mathrm{H}$ rocking mode was calculated above $1400 \mathrm{~cm}^{-1}$ and deuteriation shifted the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch to $1396 \mathrm{~cm}^{-1}$, much higher than observed. Raising this constant to $0.103 \mathrm{mdyn} / \AA$ lowered the $\mathrm{C}_{14} \mathrm{H}$ frequency to $1382 \mathrm{~cm}^{-1}$ and reduced the deuteriuminduced shift of the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching mode to $77 \mathrm{~cm}^{-1} .{ }^{31}$
(31) The potential interaction between the $\mathrm{C}_{14} \mathrm{H}$ rock and the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch is dominated by a large positive contribution from the Urey-Bradley term that is $\sim 0.3 \mathrm{mdyn} / \AA$. The non-Urey-Bradley term is used to fine-tune the overall interaction and can reasonably be positive or negative. ${ }^{23}$

Figure 7. Raman spectra of the $12,14-\mathrm{D}_{2}$ derivatives of all-trans-retinal (A), the all-trans protonated Schiff base (B), and BR_{568} (C).

The $12-\mathrm{D}^{-\mathrm{BR}_{568}}$ spectrum is shown in Figure 4 F and the calculated normal modes are presented in Table VII, 12-Deuteriation leads to large changes in both the frequencies and intensities of the fingerprint lines. Thus, it is useful to correlate the spectral shifts observed in the pigment with those observed in the [12-D]-PSB (Figure 6B). The 1159-, 1191-, 1204-, and $1237-\mathrm{cm}^{-1}$ lines in the native PSB have been assigned to the $\mathrm{C}_{10}-\mathrm{C}_{11}, \mathrm{C}_{14}-\mathrm{C}_{15}, \mathrm{C}_{8}-\mathrm{C}_{9}$, and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches, respectively. ${ }^{9}$ When C_{12} is deuteriated in the PSB, the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch shifts up $7 \mathrm{~cm}^{-1}$ to $1166 \mathrm{~cm}^{-1}$ and the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch shifts down $2 \mathrm{~cm}^{-1}$ to $1189 \mathrm{~cm}^{-1}$. The most dramatic result of 12 -deuteriation is a shift of the $\mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches to form an intense symmetric combination at $1242 \mathrm{~cm}^{-1}$ and a weak antisymmetric combination at $1218 \mathrm{~cm}^{-1}$. In 12-D-BR ${ }_{568}$, a similar set of changes are observed. First, we assign the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch at $\sim 1183 \mathrm{~cm}^{-1}$ and the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch at $1198 \mathrm{~cm}^{-1}$. This is in agreement with the PSB assignments as well as the BR_{568} calculations which show a moderate upshift of the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch and a slight downshift of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch (Table VII). The intensities of the 1224and $1244 / 1254-\mathrm{cm}^{-1}$ modes in 12-D-BR ${ }_{568}$ closely resemble those observed in the 12-D-PSB. The $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch is calculated to shift $16 \mathrm{~cm}^{-1}$ to $1234 \mathrm{~cm}^{-1}$ where it forms an antisymmetric combination with the $\mathrm{C}_{14}-\mathrm{C}_{15}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches. The symmetric combination of the $\mathrm{C}_{12}-\mathrm{C}_{13}$ and $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretches is calculated at $1250 \mathrm{~cm}^{-1}$. Thus, we assign the $1224-$ and $1244-\mathrm{cm}^{-1}$ modes to mixed vibrations involving the $\mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches. The $1254-\mathrm{cm}^{-1}$ mode is assigned to the lysine rock which has gained intensity in the 12-D derivative due to mixing with the $1244-\mathrm{cm}^{-1}$ mode.
The spectrum of the $12,14-\mathrm{D}_{2}-\mathrm{BR}_{568}$ derivative is compared with 12,14- D_{2}-all-trans-retinal and its protonated Schiff base in Figure 7. The calculated normal modes for $12,14-\mathrm{D}_{2}-\mathrm{BR}_{568}$ are presented in Table XII. As noted above, deuteriation at C_{14} in BR_{568} results in a $69-\mathrm{cm}^{-1}$ upshift of the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch and a $8-\mathrm{cm}^{-1}$ downshift of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch. Deuteriation at C_{12} results in a $10-\mathrm{cm}^{-1}$ shift of the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch to $1224 \mathrm{~cm}^{-1}$ and a $14-\mathrm{cm}^{-1}$ shift of the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch to $1183 \mathrm{~cm}^{-1}$. Assuming that the effects of these derivatives are additive, we assign the intense line at $1315 \mathrm{~cm}^{-1}$ in $12,14-\mathrm{D}_{2}-\mathrm{BR}_{568}$ as the shifted $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch, the $1224-\mathrm{cm}^{-1}$ line as the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch, and the $1193-\mathrm{cm}^{-1}$ line as the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch. The $1242-\mathrm{cm}^{-1}$ line is assigned to the lysine rock which has shifted down in frequency and consequently gained intensity by mixing with the higher frequency $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch. This mode is calculated to shift down in frequency by $3 \mathrm{~cm}^{-1}\left(13 \mathrm{~cm}^{-1}\right.$ ob-

Table XII. Calculated Frequencies and Assignments for 12,14- D_{2}-Substituted BR_{568}

obsd	calcd	description a
1636	1638	$0.35(\mathrm{C}=\mathrm{N})-0.12(13=14)-0.56(\mathrm{NH})+0.47(15 \mathrm{H})$
	1604	$0.33(7=8)-0.10(5=6)$
1596	1597	$0.34(5=6)+0.09(7=8)$
1573	1567	$0.26(13=14)-0.20(9=10)-0.16(5=6)$
1514	1525	$0.28(9=10)+0.22(13=14)$
1508	1510	$0.32(11=12)+0.14(13=14)-0.20(12-13)$
	1388	$0.66(10 \mathrm{H})-0.52(8 \mathrm{H})-0.47(7 \mathrm{H})$
1348	1353	$1.17(\mathrm{NH})+0.41(15 \mathrm{H})$
	1342	$0.78(15 \mathrm{H})-0.13(14-15)$
1327	1327	$0.54(7 \mathrm{H})+0.42(8 \mathrm{H})-0.17(12-13)$
1315	1317	$0.18(12-13)+0.17(8-9)-0.18\left(13-\mathrm{CH}_{3}\right)-$
		$0.17\left(9-\mathrm{CH}_{3}\right)$
1293	1307	$0.71(7 \mathrm{H})-0.52(8 \mathrm{H})$
1274	1287	$0.90(11 \mathrm{H})$
1242	1252	$0.87(1 \mathrm{ysine}$ rock $)+0.04(8-9)$
1224	1239	$0.14(8-9)+0.13(10-11)-0.08(14-15)$
1193	1196	$0.22(14-15)+0.15(8-9)$
1174	1175	$0.29(10-11)$
	1088	$0.21(\mathrm{~N}-\mathrm{C})+0.26(12 \mathrm{D})-0.46(14 \mathrm{D})$
	1031	$0.53(12 \mathrm{D})-0.54\left(20 \mathrm{CH} \mathrm{H}_{3} \mathrm{r}\right)-0.10(\mathrm{~N}-\mathrm{C})-0.09(14 \mathrm{D})$
	1009	$0.49(20 \mathrm{CH} \mathrm{r})-0.24\left(\mathrm{~N}_{2}-\mathrm{C}\right)-0.34(14 \mathrm{D})+0.11(12 \mathrm{D})$
1007	1002	$0.72\left(19 \mathrm{CH} \mathrm{H}_{3} \mathrm{r}\right)+0.14\left(20 \mathrm{CH}_{3} \mathrm{r}\right)$
916	920	$0.54(14 \mathrm{D})+0.51(12 \mathrm{D})$

${ }^{a}$ See footnotes to Table II.
served) in the $12,14-D_{2}$ derivative. The $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretching mode is assigned to the weak shoulder at $1174 \mathrm{~cm}^{-1}$, a shift of $5 \mathrm{~cm}^{-1}$ ($5 \mathrm{~cm}^{-1}$ calculated) from its native frequency. However, on the basis of the 12 -monodeuterio shift of $14 \mathrm{~cm}^{-1}$, it is possible that the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch is higher in frequency, degenerate with the intense $1193-\mathrm{cm}^{-1} \mathrm{C}_{14}-\mathrm{C}_{15}$ stretching mode. In this case, the $1174-\mathrm{cm}^{-1}$ shoulder would correspond to the normal mode observed at this frequency in the $10,11{ }^{-13} \mathrm{C}$ spectrum which is assigned to a vibration of the cyclohexene ring. ${ }^{16}$
Deuteriation at C_{11} in BR_{568} (Figure 4 G) results in very few frequency changes in the vibrational fingerprint. The $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch is calculated to shift $16 \mathrm{~cm}^{-1}$ in 11-D-BR 568 (Table VIII), and intensity changes in the $1170-1210-\mathrm{cm}^{-1}$ region suggest that $\mathrm{C}_{10}-\mathrm{C}_{11}$ character has shifted to higher frequency. However, in the 11 -D-BR ${ }_{568}$ spectrum a vibrational line is still observed at the native $\mathrm{C}_{10}-\mathrm{C}_{11}$ frequency, suggesting that this stretch is weakly coupled with the $\mathrm{C}_{11} \mathrm{H}$ rock. In the 11-D-PSB (Figure 6C) a line is observed at the same frequency ($1159 \mathrm{~cm}^{-1}$) as the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretching mode in the native PSB. These PSB results are consistent with the idea that the $\mathrm{C}_{11} \mathrm{H}$ rock and $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch are not strongly coupled in BR_{568}. However, it should be noted that the residual intensity at the native $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch frequency in $11 \mathrm{D}-\mathrm{BR}_{568}$ may be due to the cyclohexene ring mode discussed above.

The spectral shifts expected in 10-D-BR ${ }_{568}$ (Figure 4I) are analogous to those observed upon 14-deuteriation; a large upshift of the methyl-substituted $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch and only a slight shift of the adjacent $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch. Thus, in 10-D-BR 568 , we observe that the $C_{10}-C_{11}$ stretch shifts down in frequency by $5 \mathrm{~cm}^{-1}$ to $1165 \mathrm{~cm}^{-1}$, while the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch shifts up $80 \mathrm{~cm}^{-1}$ to $1294 \mathrm{~cm}^{-1}$. The $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch drops $11 \mathrm{~cm}^{-1}$ to $1237 \mathrm{~cm}^{-1}$ and gains intensity as a result of interaction with the higher frequency $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch, while the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch shifts only slightly to $1204 \mathrm{~cm}^{-1}$. The $1173-\mathrm{cm}^{-1}$ cyclohexene ring line is resolved when the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch drops in frequency. These shifts are reproduced quite well in the calculation (Table IX). The $\mathrm{C}_{12}-\mathrm{C}_{13}$ and $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretches are calculated to drop 4 and $3 \mathrm{~cm}^{-1}$, respectively, while the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch is calculated to shift up $\sim 74 \mathrm{~cm}^{-1}$. The isotopic shifts in $10-\mathrm{D}^{2} \mathrm{BR}_{568}$ are analogous to those in the 10-D-PSB (Figure 6 E). The $1279-\mathrm{cm}^{-1}$ line in the PSB derivative is assigned as the upshifted $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch, a shift of $75 \mathrm{~cm}^{-1}$. Similarly, the $1156-\mathrm{cm}^{-1}$ line is assigned as the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretching mode, and the $1189 \mathrm{~cm}^{-1}$ line as the $\mathrm{C}_{14}-\mathrm{C}_{15}$ vibration. The $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch has shifted $7 \mathrm{~cm}^{-1}$ to $1230 \mathrm{~cm}^{-1}$ and gained intensity, analogous to the $11-\mathrm{cm}^{-1}$ shift and intensity increase of this mode in the $10-\mathrm{D}-\mathrm{BR}_{568}$ derivative.

Figure 8. Raman spectra of the CCH rocking region of native BR_{568} (A) and its N-D (B), 15-D (C), $15, N-D_{2}$ (D), and $N-\mathrm{D} ; 14,15-{ }^{13} \mathrm{C}_{2}$ (E) derivatives.

In the spectrum of $8-\mathrm{D}_{-1} \mathrm{BR}_{568}$ (Figure 4 J), the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch shifts up $9 \mathrm{~cm}^{-1}\left(9 \mathrm{~cm}^{-1}\right.$ calculated) to $1223 \mathrm{~cm}^{-1}$ with only slight frequency changes in the other fingerprint vibrations. Intensity changes in the $1169-$ and $1201-\mathrm{cm}^{-1}$ modes result from reduction of $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch character in these modes as the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch shifts to higher frequency. The $1201-\mathrm{cm}^{-1} \mathrm{C}_{14}-\mathrm{C}_{15}$ stretching mode is calculated to mix in-phase with the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch and loses intensity when the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch character is reduced, while the $1170-\mathrm{cm}^{-1} \mathrm{C}_{10}-\mathrm{C}_{11}$ stretch mixes out-of-phase with the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch and gains intensity when $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch character is reduced (Table X).
No significant changes are observed in the fingerprint region of the 7-D- BR_{568} spectrum (Figure 4 K), indicating that the $\mathrm{C}_{7} \mathrm{H}$ rock is not coupled with any of the observed $\mathrm{C}-\mathrm{C}$ stretches. Interestingly, the $1122-\mathrm{cm}^{-1}$ mode which is sensitive to $7 .{ }^{13} \mathrm{C}$ substitution shifts only slightly to $1123 \mathrm{~cm}^{-1}$ in the $7-\mathrm{D}$ derivative.

Vinyl CCH Rocks. Both ${ }^{2} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-substitution can be used to assign the CCH in-plane rocking modes. The most dramatic effect is substitution of the vinyl protons with deuterium. The deuteriated rocks shift out of the fingerprint region of the spectrum to $900-1000 \mathrm{~cm}^{-1}$. However, large changes in frequency and intensity of the remaining CCH rocking modes often occur in the deuterium derivatives as a result of the upshift of $\mathrm{C}-\mathrm{C}$ stretching character and altered mixing among the CCH modes. For this reason it is useful to make use of the sensitivity to ${ }^{13} \mathrm{C}$-substitution of the CCH modes. The frequency shift of a pure rocking internal coordinate upon ${ }^{13} \mathrm{C}$-substitution of the central carbon atom is calculated to be $\sim 2 \mathrm{~cm}^{-1}$, but larger shifts are observed due to contributions from kinetically coupled $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ stretching coordinates.

The $1348-\mathrm{cm}^{-1}$ band is made up of two in-plane rocking modes, the $\mathrm{N}-\mathrm{H}$ rock at 1348 and the $\mathrm{C}_{15} \mathrm{H}$ rock at $1345 \mathrm{~cm}^{-1}$. The NH in-plane rock has previously been assigned at $\sim 1348 \mathrm{~cm}^{-1}$ by Massig et al. ${ }^{30}$ based on a shift of this line to $977 \mathrm{~cm}^{-1}$ upon N -deuteriation. We observe a similar shift of the NH rock in our spectra (Figure 8B) leaving the residual $\mathrm{C}_{15} \mathrm{H}$ rock at 1345 cm^{-1}. The disappearance of the NH rock at $1348 \mathrm{~cm}^{-1}$ can be more clearly seen by comparing the $15-\mathrm{D}$ and $15, \mathrm{~N}-\mathrm{D}_{2}$ derivatives in Figure 8, C and D. Additional support for this assignment comes from the $4-\mathrm{cm}^{-1}$ shift ($5 \mathrm{~cm}^{-1}$ calculated) of the $1348-\mathrm{cm}^{-1}$ line in $15-{ }^{13} \mathrm{C}-\mathrm{BR}_{568}$ (Figure 2C), presumably as a result of $\mathrm{C}=\mathrm{N}$ character in the NH rocking mode, and a shift of $3 \mathrm{~cm}^{-1}$ in ${ }^{15} \mathrm{~N}-\mathrm{BR}_{568}$ (Figure 2B). We calculate the NH rock at $1352 \mathrm{~cm}^{-1}$

Figure 9. Raman spectra of the CCH rocking region of the 12-D (A), 11-D (B), 10-D (C), 8-D (D), and 7-D (E) derivatives of BR_{568}.
and the ND rock at $974 \mathrm{~cm}^{-1}$ very close to the observed frequencies.

Comparison of the N-D and $15, N-D_{2}$ spectra (Figure 8, B and D) clearly shows a line disappearing at $\sim 1345 \mathrm{~cm}^{-1}$ which we assign as the $\mathrm{C}_{15} \mathrm{H}$ rock. Our calculation places the $\mathrm{C}_{15} \mathrm{H}$ rock at $1337 \mathrm{~cm}^{-1}$ with an out-of-phase contribution from the NH rock. Support for this assignment comes from the $5-\mathrm{cm}^{-1}$ shift ($3 \mathrm{~cm}^{-1}$ calculated) of the $1345-\mathrm{cm}^{-1}$ line in the $14,15-{ }^{13} \mathrm{C} ; N$-D spectrum (Figure 8E) and the $2-\mathrm{cm}^{-1}$ shift to $1343 \mathrm{~cm}^{-1}$ in ${ }^{15} \mathrm{~N} ; N-\mathrm{D}-\mathrm{BR}_{568}$ (data not shown). ${ }^{16}$ These shifts are attributed to the $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch character in the normal mode. Assignment of the $\mathrm{C}_{15} \mathrm{H}$ rock at $1255 \mathrm{~cm}^{-1}$, as initially suggested by Massig et al., ${ }^{30}$ would require an unusually large reduction in the $\mathrm{C}_{15} \mathrm{H}$ force constant relative to the other CCH rocks in BR_{568}.
Since the $\mathrm{C}_{14} \mathrm{H}$ rock is strongly coupled with the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch, its assignment is complicated by the upshift of the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching mode to $1317 \mathrm{~cm}^{-1}$ when C_{14} is deuteriated. In all-trans-retinal, the $\mathrm{C}_{14} \mathrm{H}$ rocking mode was assigned at $1334 \mathrm{~cm}^{-1}$ on the basis of its $13-\mathrm{cm}^{-1}$ shift to $1321 \mathrm{~cm}^{-1}$ in the $13-{ }^{13} \mathrm{C}$ derivative. This shift reflects the large $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching component in this normal mode, ${ }^{29}$ In $13-{ }^{13} \mathrm{C}$ - BR_{568} (Figure 2 F), no shifts of similar magnitude are observed in the CCH rocking region, A shift of the $1322-\mathrm{cm}^{-1}$ line to $1318 \mathrm{~cm}^{-1}$ is observed but is attributed to $\mathrm{C}_{12}-\mathrm{C}_{13}$ character in the $\mathrm{C}_{12} \mathrm{H}$ rocking mode (see below). The $\mathrm{C}_{14} \mathrm{H}$ rock is calculated at $1382 \mathrm{~cm}^{-1}$, but no intensity changes are observed near this frequency in the 14-D spectrum. The high frequency calculated for the $\mathrm{C}_{14} \mathrm{H}$ rock relative to its frequency in ATR is a result of the force field changes which were required to raise the frequency of the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch. The $\mathrm{C}_{14} \mathrm{D}$ frequency cannot be clearly assigned but most likely contributes to the 972 - and/or $984-\mathrm{cm}^{-1}$ modes in the 14-D spectrum. The appearance of two low-frequency lines in the 14-D spectrum probably results from mixing of the $7,8 \mathrm{~A}_{4} \mathrm{HOOP}$ mode with the nearly degenerate $\mathrm{C}_{14} \mathrm{D}$ rock. The deuteriated rock is calculated at $973 \mathrm{~cm}^{-1}$, suggesting that the frequency of the protonated rock may be approximately correct. Only in the $12,14-\mathrm{D}_{2}$ derivative is the $\mathrm{C}_{14} \mathrm{D}$ rock clearly assigned, where it forms a symmetric combination with the $\mathrm{C}_{12} \mathrm{D}$ rock at $916 \mathrm{~cm}^{-1}$ ($920 \mathrm{~cm}^{-1}$ calculated). The increased frequency of the $\mathrm{C}_{14} \mathrm{D}+\mathrm{C}_{12} \mathrm{D}$ combination relative to all-trans-retinal ($901 \mathrm{~cm}^{-1}$, Figure 7 A) suggests that the protonated 12 and 14 rocks are higher in BR_{568} than in retinal.

The $\mathrm{C}_{12} \mathrm{H}$ rock is assigned at $1322 \mathrm{~cm}^{-1}$ on the basis of intensity loss at this position in the 12-D-BR ${ }_{568}$ derivative (Figure 9A). This assignment is supported by the $4-5-\mathrm{cm}^{-1}$ shift of this line
in the $11-, 12-$, and $13-{ }^{13} \mathrm{C}$ derivatives. The frequency of the $\mathrm{C}_{12} \mathrm{H}$ rock is much higher than in all-trans-retinal ($1302 \mathrm{~cm}^{-1}$). This frequency increase may result from an increase in the ($\mathrm{C}_{12} \mathrm{H}$,-$\mathrm{C}_{12}-\mathrm{C}_{13}$) coupling because the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretching vibration is 32 cm^{-1} higher in BR than in ATR. This would predict a larger ${ }^{13} \mathrm{C}$ shift in the $\mathrm{C}_{12} \mathrm{H}$ rock in BR_{568} than in ATR. This is in fact observed; a $4-\mathrm{cm}^{-1}$ shift is observed in the $\mathrm{C}_{12} \mathrm{H}$ rock in $13-{ }^{13} \mathrm{C}-\mathrm{BR}$, whereas the $\mathrm{C}_{12} \mathrm{H}$ rock shifts only $1 \mathrm{~cm}^{-1}$ in the $13-{ }^{13} \mathrm{C}$-ATR. The $\mathrm{C}_{12} \mathrm{H}$ rocking mode is calculated at $1314 \mathrm{~cm}^{-1}$ as a symmetric combination of the $\mathrm{C}_{11} \mathrm{H}$ and $\mathrm{C}_{12} \mathrm{H}$ rocks. However, the predicted coupling between the $\mathrm{C}_{11} \mathrm{H}$ and $\mathrm{C}_{12} \mathrm{H}$ rocks is much larger than is observed. To reduce this coupling, and thus the large shifts of the $\mathrm{C}_{11} \mathrm{H}$ rock in the 12-D calculation and of the $\mathrm{C}_{12} \mathrm{H}$ rock in the 11-D calculation, it would be necessary to selectively iterate the rock-rock coupling constants. Finally, the $\mathrm{C}_{12} \mathrm{D}$ rocking mode is assigned at $980 \mathrm{~cm}^{-1}$ ($979 \mathrm{~cm}^{-1}$ calculated).

In the $12,14-\mathrm{D}_{2}$ derivative of BR_{568}, direct kinetic coupling splits the individual $\mathrm{C}_{12} \mathrm{D}$ and $\mathrm{C}_{14} \mathrm{D}$ rocking modes into a symmetric combination which is calculated at $920 \mathrm{~cm}^{-1}$, and an antisymmetric combination which is calculated to mix with the $\mathrm{C}_{20} \mathrm{H}_{3}$ methyl rock and $\mathrm{N}-\mathrm{C}$ stretch to form normal modes at 1009,1031 , and $1088 \mathrm{~cm}^{-1}$. Only the symmetric combination is observed in the $12,14-\mathrm{D}_{2}-\mathrm{BR}_{568}$ Raman spectrum where it appears as an intense band at $916 \mathrm{~cm}^{-1}$ (Figure 7C).

The $\mathrm{C}_{11} \mathrm{H}$ rock is assigned at $1273 \mathrm{~cm}^{-1}$ on the basis of a shift of this mode to $960 \mathrm{~cm}^{-1}$ upon 11 -deuteriation. Both the protonated and the deuteriated rocking vibrations are similar to those in all-trans-retinal (1270 and $966 \mathrm{~cm}^{-1}$) and the all-trans-PSB (1273 and $968 \mathrm{~cm}^{-1}$). A weak mode remains at $1274 \mathrm{~cm}^{-1}$ in the 11-D-BR ${ }_{568}$ derivative which has not been assigned (Figure 9B).

The $\mathrm{C}_{10} \mathrm{H}$ in-plane rock, calculated at $1395 \mathrm{~cm}^{-1}$, has not been observed in the native BR_{568} spectrum. The shift of $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretching character into the region of the CCH rocks in the $10-\mathrm{D}$ derivative results in loss of intensity in normal modes at 1305 and $1330 \mathrm{~cm}^{-1}$ (Figure 9C). However, on the basis of the isotopic shifts observed in the 7-D and 8-D-BR ${ }_{568}$ derivatives, we have assigned these lines to the $\mathrm{C}_{7} \mathrm{H}$ and $\mathrm{C}_{8} \mathrm{H}$ rocks which form a symmetric combination at $1330 \mathrm{~cm}^{-1}$ and an antisymmetric combination at $1305 \mathrm{~cm}^{-1}$ (below). One explanation for the sensitivity of these modes to 10 -deuteriation is provided by the calculation (Table IX), When the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch shifts up in frequency upon $10-$ deuteriation, the symmetric combination of the $\mathrm{C}_{7} \mathrm{H}$ and $\mathrm{C}_{8} \mathrm{H}$ rocks is calculated to shift to $1359 \mathrm{~cm}^{-1}$ while the antisymmetric combination mixes with the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch forming an intense mode at $1294 \mathrm{~cm}^{-1}$, where the rock-stretch intensities add, and a weak mode calculated at $1306 \mathrm{~cm}^{-1}$, where the rock-stretch intensities cancel. The $9-{ }^{13} \mathrm{C}$ spectrum shows no significant frequency shifts of the CCH rocking modes which may be used to assign the $\mathrm{C}_{10} \mathrm{H}$ rock. Examination of the observed lines near the calculated $1395-\mathrm{cm}^{-1}$ frequency shows no effects resulting from 10 -deuteriation. The only quantitative information is the observation of the $\mathrm{C}_{10} \mathrm{D}$ in-plane rock at $972 \mathrm{~cm}^{-1}$ ($970 \mathrm{~cm}^{-1}$ calculated).

The $\mathrm{C}_{7} \mathrm{H}$ and $\mathrm{C}_{8} \mathrm{H}$ in-plane rocks are calculated to be strongly mixed, forming a symmetric combination at $1325 \mathrm{~cm}^{-1}$ and an antisymmetric combination at $1303 \mathrm{~cm}^{-1}$. In the 7-D-BR ${ }_{568}$ spectrum (Figure 9E), intensity is lost at 1305, 1322, and 1330 cm^{-1}, while in the 8-D derivative (Figure 9D), intensity is lost at $1305 \mathrm{~cm}^{-1}$ and intensity has shifted from $1322-1330 \mathrm{~cm}^{-1}$ to 1316 cm^{-1}. We assign the symmetric combination of the $\mathrm{C}_{7} \mathrm{H}$ and $\mathrm{C}_{8} \mathrm{H}$ rocks to the $1330-\mathrm{cm}^{-1}$ line and the antisymmetric combination to the line at $1305 \mathrm{~cm}^{-1}$. The $\mathrm{C}_{7} \mathrm{H}$ rocking coordinate is calculated to make significant contributions to both modes in agreement with the loss of intensity between 1275 and $1348 \mathrm{~cm}^{-1}$ in the $7-\mathrm{D}-\mathrm{BR}_{568}$ spectrum. In contrast, upon 8 -deuteriation, the uncoupled $\mathrm{C}_{7} \mathrm{H}$ rock forms an intense mode at $1316 \mathrm{~cm}^{-1}$ ($1317 \mathrm{~cm}^{-1}$ calculated), while the $\mathrm{C}_{8} \mathrm{D}$ rock has shifted to $980 \mathrm{~cm}^{-1}$. ${ }^{13} \mathrm{C}$-Substitution lends support to these assignments. In the 7 - and $8-{ }^{13} \mathrm{C}$ derivatives, the $1330 \mathrm{~cm}^{-1}$ line shifts $\sim 10 \mathrm{~cm}^{-1}$ to $1320 \mathrm{~cm}^{-1}$ reflecting contributions from the $\mathrm{C}_{6}-\mathrm{C}_{7}, \mathrm{C}_{7}=\mathrm{C}_{8}$, and/or $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretches.
(B) Hydrogen Out-of-Plane Vibrations. Table XIII presents the vinyl hydrogen out-of-plane wag assignments for BR_{568}. The HOOP assignments are aided by vibrational calculations and by

Figure 10. Mass-weighted atomic displacements of the calculated 968 (A), 832 (B), and $818 \mathrm{~cm}^{-1}$ (C) HOOP modes of BR_{568}.
comparisons with model compounds. On the basis of empirical assignments and normal mode calculations for these vibrations in all-trans-retinal, Curry et al. formulated four general rules for HOOP frequencies in trans-substituted polyenes. ${ }^{8}$ (1) Hydrogens trans to a double bond couple strongly forming an " A_{u} " HOOP in the $950-970-\mathrm{cm}^{-1}$ range and a " B_{8} " HOOP from 750 to 850 cm^{-1}. (2) A proton and a deuteron trans across a double bond give rise to two lines, one due to the largely uncoupled protonated wag ($900-920 \mathrm{~cm}^{-1}$) and the other due to the deuteriated wag ($700-750 \mathrm{~cm}^{-1}$), (3) Deuterons trans to a double bond couple weakly or not at all with each other. (4) A proton trans to a CH_{3} group across a double bond appears between 850 and $900 \mathrm{~cm}^{-1}$.

The trans $\mathrm{HC}_{11}=\mathrm{C}_{12} \mathrm{H}$ protons in BR_{568} couple strongly to form an A_{u} HOOP at $959 \mathrm{~cm}^{-1}$ and a B_{g} HOOP at $\sim 840 \mathrm{~cm}^{-1}$. The atomic displacements of these modes are depicted in Figure 10. The A_{u} HOOP assignment at $959 \mathrm{~cm}^{-1}$ ($968 \mathrm{~cm}^{-1}$ calculated) is based on the disappearance of this line in 12-D and 12,14- $\mathrm{D}_{2}-\mathrm{BR}_{568}$ (Figures 4 F and 7 C). In the $11-\mathrm{D}$ spectrum (Figure 4 G), the $\mathrm{C}_{11} \mathrm{D}$ in-plane rock has shifted to $960 \mathrm{~cm}^{-1}$, making it appear as though the $959-\mathrm{cm}^{-1}$ line is not sensitive to 11 -deuteriation. There are two weak lines at ~ 842 and $851 \mathrm{~cm}^{-1}$ (see Figure 11A) which could be the B_{g} HOOP mode. We tentatively assign the $842-\mathrm{cm}^{-1}$ mode to the $\mathrm{HC}_{11}=\mathrm{C}_{12} \mathrm{H} \mathrm{B}_{\mathrm{g}}$ vibration based on its correspondence with the calculated frequency.
In 11-D-BR ${ }_{568}$, the uncoupled $\mathrm{C}_{12} \mathrm{H}$ wag is calculated to shift to $930 \mathrm{~cm}^{-1}$ ($926 \mathrm{~cm}^{-1}$ observed), while the $\mathrm{C}_{11} \mathrm{D}$ wag is calculated at $743 \mathrm{~cm}^{-1}$. A weak line is observed at $744 \mathrm{~cm}^{-1}$ in the 11-D spectrum close to the calculated frequency. However, a weak line is also observed at this position in the native spectrum (Figure 11) precluding a conclusive assignment. In $12-\mathrm{D}-\mathrm{BR}_{568}$, the

Table XIII. Calculated Frequencies and Assignments for Hydrogen Out-of-Plane Wags ${ }^{a}$

obsd	calcd	description	obsd	calcd	description
		Unmodified			12,14-D ${ }_{2}$
1002	1009	$0.98(15 w)-0.16$ (lysine)		1008	0,97(15w)
985	987	$0.70(7 w)+0.63(8 w)$		948	1.07(Nw)
959	968	$0.71(12 w)+0.53(11 w)$		821	0.71 (lysine)
942	949	$1.04(\mathrm{Nw})+0.32$ (lysine)	750	749	$0.82(12 w)+0.48(14 w)$
898	901	0.87(10w)	673	680	$0.79(14 w)-0.46(12 w)$
882	881	$0.71(14 w)+0.58(12 w)-0.55(11 w)$			
851	859	$0.71(8 w)-0.60(7 w)$			12 D $1.05(\mathrm{Nw})$
842	832	$0.68(12 w)-0.49(11 w)-0.63(14 w)$	940 918	949	$1.05(\mathrm{Nw})$
830	818		918	918 900	$0.72(11 w)+0.61(10 w)$ $0.76(10 w)-0.79(11 w)$
		$0.13(\mathrm{Nw})+0.28(15 \mathrm{w})$	856	866	0.85 (14w)
		15D	846	859	0.54(7w) - 0.64(8w)
	987	$0.70(7 w)+0.63(8 w)$	830	819	0.70 (lysine)
960	969	$0.54(11 w)+0.71(12 w)$		722	0.92(12w)
943	950	$1.03(\mathrm{Nw})+0.33$ (lysine)			
896	901	$0.87(10 w)-0.58(11 w)+0.47(8 w)$			${ }_{0}^{11,12-D_{2}}$
882	884	$0.77(14 w)+0.51(12 w)-0.48(11 w)$		987 950	$0.67(7 \mathrm{w})+0.65(8 \mathrm{w})$ $1.05(\mathrm{Nw})$
	865 856	$0.55(8 w)-0.47(7 w)+0.31$ (lysine) $0.40($ lysine $)-0.50(8 w)$	905	950 907	$1.05(\mathrm{NW})$ $0.97(10 \mathrm{w})$
846	832	0.40(11 ${ }^{\text {a }}$	858	867	0.92 (14w)
786	782	0.74(15w)	845	860	$0.61(7 w)-0.71(8 w)$
		0.74 (15w)	830	819	0.70 (lysine)
		ND	742	746	$0.86(11 w)-0.55(12 w)$
$996{ }^{\text {b }}$	1004	1.02(15w)	710	712	$0.74(12 w)+0.32(11 w)$
	987	$0.70(7 w)+0.63(8 w)$			
959	968	$0.53(11 w)+0.71(12 w)$		950	1.04(Nw)
896	901	$0.86(10 \mathrm{w})$	926	950	$\begin{aligned} & 1.04(\mathrm{Nw}) \\ & 0.84(12 \mathrm{w})\end{aligned}+0.69(10 \mathrm{w})$
887	885	0.80 (14w)	889	891	$0.84(12 w)+0.69(10 w)$ $0.58(10 w)-0.54(12 w)$
853	862	0.71(8w) - 0.60(7w)	889	891	$0.71(14 w)+0.62(8 w)-0.53(7 w)$
	849	0.66 (lysine)	840	848	$0.32(7 w)-0.37(8 w)+0.70(14 w)$
722	725	$0.78(\mathrm{Nw})$		819	0.70 (lysine)
			744	743	0.91 (11w)
	987	$15, \mathrm{~N}-\mathrm{D}_{2}$ $0.70(7 \mathrm{w})+0.63(8 w)$			10 D $0.71(7 w)+0.63(8 w)$
960	968	$0.54(11 w)+0.71(12 w)$	953	987	$0.71(7 w)+0.63(8 w)$ $0.60(11 w)+0.72(12 w)$
	906	0.46 (lysine)		961	$0.60(11 \mathrm{w})+0.72(12 \mathrm{w})$
896	901	0.88(10w)		949 884	1.02(Nw) $0.70(14 \mathrm{w})-0.71(11 \mathrm{w})+0.62(12 \mathrm{w})$
885	876	0.43 (14w)	885	884	$0.70(14 w)-0.71(11 w)+0.62(12 w)$
853	858	0.57(7w)-0.66(8w)		876	$0.82(7 w)-0.95(8 w)$
844	832	$0.48(11 w)-0.67(12 w)$	839	841	$0.56(11 w)-0.57(12 w)+0.80(14 w)$
798	783	0.72 (15w)	830	818	0.68 (lysine)
725	715	0.79(Nw)	$725^{\text {b }}$	716	0.89(10w)
		14 D $0.99(15 \mathrm{w})$			
	1009 987	$0.99(15 w)$ $0.70(7 w)+0.63(8 w)$	961 939	968 940	$0.53(11 w)+0.70(12 w)$ $1.06(7 w)$
958	968	$0.55(1 \mathrm{lw})+0.70(12 \mathrm{w})$	898	895	$0.92(10 w)-0.74(11 w)$
	948	$1.07(\mathrm{Nw})$	881	876	0.79 (14w)
898	901	0.88(10w)	743	744	0.94(8w)
850	869	$0.69(8 w)-0.57(7 w)$			7D
840	847	$0.68(12 w)-0.56(10 w)-0.41$ (11w)	963	968	$0.52(11 w)+0.70(12 w)$
829	820	0.71 (lysine)	930	926	$1.02(8 w)$
691	696	0.90 (14w)	890	889	$0.71(10 w)-0.75(11 w)+0.43(14 w)$
			875	873	$0.73(14 w)-0.67(10 w)$
			675?	761	0.95(7w)

${ }^{a}$ Abbreviations used: w, hydrogen out-of-plane wag. ${ }^{b}$ Frequency obtained from 77 K spectrum.
uncoupled $\mathrm{C}_{11} \mathrm{H}$ wag is found at $918 \mathrm{~cm}^{-1}$ ($918 \mathrm{~cm}^{-1}$ calculated). The 12-D wag is most clearly observed at $750 \mathrm{~cm}^{-1}$ in 12,14 -$\mathrm{D}_{2}-\mathrm{BR}_{568}$ (Figure 7 C) where it mixes with the $\mathrm{C}_{14} \mathrm{D}$ wag and is presumably pushed up in frequency from its position in 12-DBR_{568}. In 11,12- $\mathrm{D}_{2}-\mathrm{BR}_{568}$, the $\mathrm{C}_{12} \mathrm{D}$ and $\mathrm{C}_{11} \mathrm{D}$ wags are calculated to form an antisymmetric combination at $746 \mathrm{~cm}^{-1}\left(742 \mathrm{~cm}^{-1}\right.$ observed) and a symmetric combination at $712 \mathrm{~cm}^{-1}\left(710 \mathrm{~cm}^{-1}\right.$ observed). However, the assignment of the $742-\mathrm{cm}^{-1}$ mode is not definitive due to the presence of weak lines in the native spectrum (Figure 11).

We calculate the $\mathrm{HC}_{7}=\mathrm{C}_{8} \mathrm{H} \mathrm{A}_{u}$ HOOP combination at 987 cm^{-1} and a $\mathbf{B}_{\mathbf{g}}$ combination at $859 \mathrm{~cm}^{-1}$. There are two weak lines near $987 \mathrm{~cm}^{-1}$ (i.e., 971 and $984 \mathrm{~cm}^{-1}$ in Figure 11A) which are candidates for this A_{u} HOOP mode. However, neither line shifts in $7-$ or $8 .{ }^{13} \mathrm{C}-\mathrm{BR}_{568}$, and these lines cannot be resolved in the 7-D or 8-D spectra due to the appearance of the $\mathrm{C}_{7} \mathrm{D}$ and $\mathrm{C}_{8} \mathrm{D}$ in-plane rocks. The uncoupled $\mathrm{C}_{7} \mathrm{H}$ and $\mathrm{C}_{8} \mathrm{H}$ HOOP modes in the $8-\mathrm{D}$
and 7-D derivatives are assigned to weak lines at 939 and 930 cm^{-1}, respectively. These frequencies are close to the values expected for uncoupled protonated wags based on the rules given above, and they are reproduced in the calculation. The $\mathrm{C}_{8} \mathrm{D}$ wag is assigned at $743 \mathrm{~cm}^{-1}$ ($744 \mathrm{~cm}^{-1}$ calculated) in the $8-\mathrm{D}-\mathrm{BR}_{568}$ spectrum. The $\mathrm{C}_{7} \mathrm{D}$ wag assignment is more ambiguous. Three very weak modes are observed at 675,713 , and $\sim 748 \mathrm{~cm}^{-1}$, with the $675-\mathrm{cm}^{-1}$ line becoming quite intense in the $7,8-\mathrm{D}_{2}$ spectrum. The shift of the $675-\mathrm{cm}^{-1}$ line to $672 \mathrm{~cm}^{-1}$ in the $7,8-\mathrm{D}_{2}$ spectrum and its increased intensity suggest that the $675-\mathrm{cm}^{-1}$ mode is the $\mathrm{C}_{7} \mathrm{D}$ wag. This assignment places this mode significantly below the $\mathrm{C}_{7} \mathrm{D}$ frequency in ATR ($718 \mathrm{~cm}^{-1}$). The calculation which was not fit to the $675-\mathrm{cm}^{-1}$ assignment predicts a $\mathrm{C}_{7} \mathrm{D}$ frequency of $761 \mathrm{~cm}^{-1}$,

The $\mathrm{C}_{10} \mathrm{H}$ wag is assigned at $898 \mathrm{~cm}^{-1}$ on the basis of a shift to $725 \mathrm{~cm}^{-1}$ ($716 \mathrm{~cm}^{-1}$ calculated) in 10-D-BR ${ }_{568}$. The $\mathrm{C}_{10} \mathrm{D}$ wag is not observed in the $10-\mathrm{D}-\mathrm{BR}_{568}$ spectrum (Figure 4I), but it

Figure 11. High signal-to-noise spectra of the low wavenumber region of native BR_{568} in $\mathrm{H}_{2} \mathrm{O}(\mathrm{A})$ and $\mathrm{D}_{2} \mathrm{O}(\mathrm{B})$. Inserts are replicate scans.
appears as a weak line at $725 \mathrm{~cm}^{-1}$ in the $77 \mathrm{~K} 10-\mathrm{D}$ spectrum. ${ }^{15}$ The $\mathrm{C}_{14} \mathrm{H}$ wag is assigned at $882 \mathrm{~cm}^{-1}$ on the basis of a shift to $691 \mathrm{~cm}^{-1}$ ($696 \mathrm{~cm}^{-1}$ calculated) in $14-\mathrm{D}-\mathrm{BR}_{568}$ (Figure 4E). The $\mathrm{C}_{10} \mathrm{H}$ and $\mathrm{C}_{14} \mathrm{H}$ frequencies and isotopic shifts are close to those observed in all-trans-retinal.

The Schiff base moiety is thought to have a central role in the proton pumping mechanism of bacteriorhodopsin, so it is important to examine the NH and $\mathrm{C}_{15} \mathrm{H}$ wags in detail. The simplest picture is one in which the $\mathrm{C}_{15} \mathrm{H}$ and NH protons couple across the $\mathrm{C}=\mathrm{N}$ bond to form a high-frequency " A_{u} " and a low-frequency " B_{g} " combination, However, hydrogen bonding of the Schiff base proton may alter its vibrational properties. Also, the vibrational coupling between the NH wag and out-of-plane modes of the ϵ-lysine CH_{2} group may alter the frequency and isotopic shifts of the NH and $\mathrm{C}_{15} \mathrm{H}$ HOOP modes, Thus, it is difficult to predict a priori the frequencies and coupling patterns of these vibrations,

We will first deal with the assignment of the ND and $\mathrm{C}_{15} \mathrm{D}$ wags, Deuteriation at C_{15} produces an intense band at $786 \mathrm{~cm}^{-1}$ which can immediately be assigned as the $\mathrm{C}_{15} \mathrm{D}$ wag (Figure 4C). The appearance of an intense $\mathrm{C}_{15} \mathrm{D}$ in-plane rock at $974 \mathrm{~cm}^{-1}$ makes the assignment of the $\mathrm{C}_{15} \mathrm{H}$ wag difficult. Loss of intensity at 985 and $1002 \mathrm{~cm}^{-1}$ in high signal-to-noise $15-\mathrm{D}$ spectra of Massig et al. ${ }^{30}$ suggests that the $\mathrm{C}_{15} \mathrm{H}$ wag is higher in frequency than the protonated wags previously discussed. N-Deuteriation (Figure 11) results in loss of intensity in the strong $830-\mathrm{cm}^{-1}$ line and in a much weaker line at $942 \mathrm{~cm}^{-1}$, There is an intensity increase at $722 \mathrm{~cm}^{-1}$ in the ND spectrum which is tentatively assigned as the ND wag. This assignment is consistent with shifts in other derivatives, The ND wag must be below $786 \mathrm{~cm}^{-1}$ because in $15, N-\mathrm{D}_{2} \mathrm{BR}_{568}$ (Figure 4D) the $\mathrm{C}_{15} \mathrm{D}$ wag is pushed $u p$ to 798 cm^{-1} due to coupling with the lower frequency ND HOOP mode, Similarly, the ND wag must be above $\sim 690 \mathrm{~cm}^{-1}$ because the $\mathrm{C}_{14} \mathrm{D}$ wag at $691 \mathrm{~cm}^{-1}$ in the 14 D spectrum shifts down to 678 cm^{-1} in the $14, N-\mathrm{D}_{2}$ spectrum due to coupling with the ND wag. A drop in the $\mathrm{C}_{14} \mathrm{D}$ wag frequency is also observed in the $12,14, N-\mathrm{D}_{3}$ spectrum (data not shown) along with the appearance of a weak broad line at $\sim 707 \mathrm{~cm}^{-1}$ which could correspond with the ND wag. ${ }^{16}$ These shifts argue that the ND wag is at ~ 720 cm^{-1}.

Several lines of evidence forced us to abandon the earlier assignment of the $830-\mathrm{cm}^{-1}$ line as an isolated $\mathrm{N}-\mathrm{H}$ wag or $\mathrm{HN}=\mathrm{C}_{15} \mathrm{H}$ wag combination. ${ }^{32}$ First, if the same H / D frequency
ratio observed for $\mathrm{C}-\mathrm{H}$ wags $(\sim 1.24-1,28)$ is applied to the $\mathrm{N}-\mathrm{D}$ wag, the $722 \mathrm{~cm}^{-1} \mathrm{~N}-\mathrm{D}$ frequency predicts an $\mathrm{N}-\mathrm{H}$ frequency significantly above $830 \mathrm{~cm}^{-1}$. Second, the assignment of the NH wag at $830 \mathrm{~cm}^{-1}$ is inconsistent with the isotopic induced shift of the $\mathrm{C}_{14} \mathrm{H}$ wag upon N -deuteriation. If the NH wag (or $\mathrm{HN}=$ $\mathrm{C}_{15} \mathrm{H} \mathrm{B}$ g combination) is below the $\mathrm{C}_{14} \mathrm{H}$ wag then the $\mathrm{C}_{14} \mathrm{H}$ wag will drop in frequency upon N -deuteriation. If the NH wag is above the $\mathrm{C}_{14} \mathrm{H}$ wag, the $\mathrm{C}_{14} \mathrm{H}$ wag will increase in frequency in N-D- BR_{568}, Thus, the $5-\mathrm{cm}^{-1}$ upshift of the $\mathrm{C}_{14} \mathrm{H}$ mode to 887 cm^{-1} observed in $\mathrm{D}_{2} \mathrm{O}$ argues that the NH wag is above $882 \mathrm{~cm}^{-1}$.

If the $830-\mathrm{cm}^{-1}$ mode is not the NH wag, then we must account for intensity changes at this frequency in $N-\mathrm{D}-\mathrm{BR}_{568}$ and assign the NH wag to another position. One explanation for the sensitivity of the $830-\mathrm{cm}^{-1}$ mode to N -deuteriation is that it is predominantly the out-of-plane vibration of the lysine CH_{2} group, which contains some NH character due to vibrational coupling. This mode is depicted in Figure 10C. We are able to calculate this mode near $830 \mathrm{~cm}^{-1}$ using reasonable force constants for the lysine coordinates. Upon N -deuteriation, this mode is calculated to shift $31 \mathrm{~cm}^{-1}$ to $849 \mathrm{~cm}^{-1}$, Comparing the NH and ND spectra in Figure 11 reveals a large increase of intensity at $854 \mathrm{~cm}^{-1}$ which may be attributed to the $830-\mathrm{cm}^{-1}$ mode shifting to higher frequency when coupling with the NH wag is removed. ${ }^{33}$

If we assign the $830-\mathrm{cm}^{-1}$ mode to the lysine vibration and then iterate the out-of-plane force field to reproduce the frequencies and shifts of the $\mathrm{C}_{15} \mathrm{D}$ and $\mathrm{C}_{14} \mathrm{D}$ wags in the various derivatives discussed above, the $\mathrm{C}_{15} \mathrm{H}$ and NH wags are calculated at 1009 and $949 \mathrm{~cm}^{-1}$, respectively. ${ }^{34}$ The $1009-\mathrm{cm}^{-1}$ line is close to the $1002-\mathrm{cm}^{-1}$ shoulder which disappears upon 15 -deuteriation ${ }^{30}$ and is therefore assigned as the $\mathrm{C}_{15} \mathrm{H}$ wag. Raman spectra of N - D BR_{568} at 77 K suggest that this line shifts to $996 \mathrm{~cm}^{-1}$ consistent with an assignment as a weakly coupled $\mathrm{HC}_{15}=\mathrm{NH}$ " A_{u} " combination. This shift is reproduced in the calculation. The calculated $949-\mathrm{cm}^{-1}$ frequency is close to that of the $942-\mathrm{cm}^{-1}$ line which loses intensity upon N-deuteriation (Figure 11B), This line appears to increase in intensity in the 15-D spectrum (Figure 4C) which would be consistent with its assignment as a weakly coupled $\mathrm{HC}_{15}=\mathrm{NH}$ combination.
(C) Methyl-Group Vibrations. The methyl-group vibrations of BR_{568} are very similar to those of all-trans-retinal and the all-trans-PSB. These vibrations can be divided into three categories: the HCH bending vibrations or methyl deformations, the methyl rocks, and the $\mathrm{C}-\mathrm{CH}_{3}$ stretches. The broad band at $\sim 1450 \mathrm{~cm}^{-1}$ in native BR_{568} is due to the asymmetric deformations of the methyl groups, while the $1378-\mathrm{cm}^{-1}$ line results from the symmetric deformations. These assignments are based on their
(32) Attempts to fit the NH wag (or $\mathrm{NH}=\mathrm{C}_{15} \mathrm{H}$ " B_{g} " combination) at 830 cm^{-1} in the vibrational calculation were frustrated by interaction of the lysine mode and the NH mode. For instance, if the diagonal NH force constant was lowered, both the lysine mode and the NH mode would drop in frequency and begin to exchange character. When the NH force constant was decreased enough to produce the $830-\mathrm{cm}^{-1}$ frequency, exchange of character between these modes was significant with the majority of the NH character appearing at $\sim 750 \mathrm{~cm}^{-1}$. To test whether incorrect geometric or potential energy parametrization of the lysine group prevented the calculation of the $830-\mathrm{cm}^{-1}$ line as the NH wag, out-of-plane calculations were undertaken on an all-trans-retinal PSB terminating in a $\mathrm{C}=\mathrm{NH}-\mathrm{R}$ group. The out-of-plane force field was adjusted to place the NH wag at $\sim 830 \mathrm{~cm}^{-1}$. The observed couplings between the $\mathrm{NH}, \mathrm{C}_{15} \mathrm{H}$, and $\mathrm{C}_{14} \mathrm{H}$ wags were approximately reproduced. However, the calculation still incorrectly predicted the direction of the shift of the $\mathrm{C}_{14} \mathrm{H}$ wag upon N -deuteriation ($882 \rightarrow 880 \mathrm{~cm}^{-1}$ calculated, $882 \rightarrow 887 \mathrm{~cm}^{-1}$ observed). Further, it was not possible to simultaneously fit the $\mathrm{C}_{15} \mathrm{H}$ wag at $\sim 1002 \mathrm{~cm}^{-1}$ and reproduce both the $\mathrm{C}_{14} \mathrm{H}$ and NH frequencies and isotopic shifts.
(33) The frequency shift of the lysine CH_{2} mode upon N -deuteriation is sensitive to the conformation about the $\mathrm{N}-\mathrm{C}_{\text {jys }}$ bond. In the syn geometry, much greater coupling between the NH wag and lysine mode occurs and the lysine mode shifts up $\sim 75 \mathrm{~cm}^{-1}$ upon N -deuteriation. The smaller shift (830 $\rightarrow 854 \mathrm{~cm}^{-1}$) observed in BR_{568} suggests that the $\mathrm{N}-\mathrm{C}_{\text {lys }}$ conformation is anti, as depicted in Figure 1.
(34) The frequency ordering and coupling of the lysine $-\mathrm{CH}_{2}$ mode and the NH wag predicted in the calculations presented here are supported by QCFF- π calculations which predict mixed lysine- CH_{2} and NH wag normal modes at 797 and $851 \mathrm{~cm}^{-1}$ with the lower frequency mode dominated by the lysine out-of-plane coordinate.

Figure 12. Resonance Raman spectrum of BR_{568} labeled with the dominant internal coordinates that contribute to the vibrational lines.
correspondence with the $1455-$ and $1389-\mathrm{cm}^{-1}$ methyl deformations in ATR ${ }^{8}$ and with the calculated frequencies of ~ 1450 and 1378 cm^{-1}, respectively.

The $1008-\mathrm{cm}^{-1}$ line has been assigned as the symmetric in-plane rocking combination involving mainly the C_{19} and C_{20} methyl groups. The methyl rocking coordinates couple only weakly, and the asymmetric combination forms a weak mode at $1022 \mathrm{~cm}^{-1}$. When either the C_{19} or C_{20} methyl groups is perdeuterated, the substituted in-plane rock shifts to $\sim 850 \mathrm{~cm}^{-1}$, leaving the remaining in-plane methyl rock at $1016 \mathrm{~cm}^{-1}$ in the $10,19-\mathrm{D}_{4}$ derivative and at $1019 \mathrm{~cm}^{-1}$ in $14,20-\mathrm{D}_{4} \mathrm{BR}_{568}{ }^{15,16}$

Finally, the methyl stretches are calculated at 877 and $860 \mathrm{~cm}^{-1}$. However, there are no significant shifts in the major lines in the low-wavenumber region of $18-, 19$-, and $20-{ }^{-13} \mathrm{C}-\mathrm{BR}_{568}$ (data not shown), ${ }^{16}$ and thus the $\mathrm{C}-\mathrm{CH}_{3}$ stretching modes have not been assigned.
(D) Cyclohexene Ring Vibrations. The vibrations of the cyclohexene ring are generally weak or absent in Raman spectra of BR_{568} because they are only slightly coupled to the resonant $\pi \rightarrow \pi^{*}$ electronic transition. In the spectrum of the all-trans-PSB, three Raman lines at 792,1121 , and $1131 \mathrm{~cm}^{-1}$ were attributed to ring modes. These lines correspond well with the weak ~ 800-, $1122-$, and $1135-\mathrm{cm}^{-1}$ lines in BR_{568}. Assignment of the 1122 and $1135-\mathrm{cm}^{-1}$ lines as cyclohexene ring modes is supported by their sensitivity to 5 - and $6-^{13} \mathrm{C}$ substitution. Three additional lines at 1174,1187 , and $1203 \mathrm{~cm}^{-1}$ (beneath the intense $1201-\mathrm{cm}^{-1}$ $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretching mode) may result from ring vibrations corresponding to the $1172-, 1187$-, and $1206-\mathrm{cm}^{-1}$ modes observed in β-ionone. Of these, the $1187-\mathrm{cm}^{-1}$ line shifts $5 \mathrm{~cm}^{-1}$ to 1182 cm^{-1} in the $5-{ }^{13} \mathrm{C}$ derivative and must therefore possess significant $\mathrm{C}_{4}-\mathrm{C}_{5}$ stretching character.

Discussion

First, it is important to note that the complete vibrational analysis presented here (summary in Figure 12) fully supports

Figure 13. Correlation diagram of the $\mathrm{C}-\mathrm{C}$ single bond stretches of BR_{568} and the all-trans protonated Schiff base (PSB). In BR_{568} the ${ }^{\circ} \mathrm{C}_{12}{ }^{-} \mathrm{C}_{13}$ stretch" shifts up and mixes strongly with a lysine $-\mathrm{CH}_{2}$ rock, producing two modes at 1248 and $1255 \mathrm{~cm}^{-1}$.
the $\mathrm{C}_{15}=\mathrm{N}$ anti structure of the retinal chromophore in BR_{568}. We previously used calculations on Schiff base fragments to argue that the coupling between the $\mathrm{N}-\mathrm{H}$ rock and the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch was diagnostic of the $\mathrm{C}_{15}=\mathrm{N}$ configuration. ${ }^{22 \mathrm{a}} \mathrm{N}$-Deuteriation resulted in a large ($>40 \mathrm{~cm}^{-1}$) shift of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch in the syn geometry and only a small shift in the anti geometry. The calculation presented here which accurately fits the frequencies of the full chromophore and its isotopic derivatives supports this analysis. Also, attempts to reproduce the vibrational frequencies of BR_{568} with use of the syn geometry were unsuccessful. The correctness of this result is further supported by the vibrational analysis of the $\mathrm{C}_{15}=\mathrm{N}$ syn chromophore in $\mathrm{BR}_{548}{ }^{35}$ The BR_{548} calculation, which reproduces the vibrational frequencies of native BR_{548} and its isotopic derivatives, predicts a $45-\mathrm{cm}^{-1}$ upshift of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ mode upon N -deuteriation-close to the $41-\mathrm{cm}^{-1}$ shift observed.

The vibrational properties of the Schiff base moiety are of interest because the Schiff base proton is thought to be involved in proton pumping. The Schiff base mode is significantly lower in $\mathrm{BR}_{568}\left(1640 \mathrm{~cm}^{-1}\right)$ than in the all-trans-PSB $\left(1654 \mathrm{~cm}^{-1}\right)$. On the basis of the N-D and $15-\mathrm{D}$ shifts in both the all-trans-PSB and BR_{568}, we showed in a previous paper ${ }^{9}$ that this $14-\mathrm{cm}^{-1}$ frequency difference can be partitioned into $7 \mathrm{~cm}^{-1}$ due to reduced $\mathrm{N}-\mathrm{H}$ rock coupling, $2 \mathrm{~cm}^{-1}$ due to reduced $\mathrm{C}_{15} \mathrm{H}$ rock coupling, and $\sim 5 \mathrm{~cm}^{-1}$ due to a reduction in the intrinsic bond order or indirect interactions. The largest effect, a reduction in NH coupling, may be correlated with a reduction in hydrogen bonding between the Schiff base proton and its counterion as shown by solid-state NMR 36 and resonance Raman spectroscopy. ${ }^{37}$ The reduced $\mathrm{N}-\mathrm{H}$ bond length in a weak hydrogen bond is expected to decrease the net rock-stretch coupling; a shorter $\mathrm{N}-\mathrm{H}$ bond length increases the through-space interaction between C_{15} and the Schiff base proton which counteracts the direct kinetic cou ling between the NH rock and $\mathrm{C}=\mathrm{N}$ stretch. This suggests ths . the magnitude of the shift of the Schiff base mode in $\mathrm{D}_{2} \mathrm{O}$ may provide
(35) Smith, S. O.; Pardoen, J. A.; Lugtenburg, J.; Mathies, R. A. J. Phys. Chem. 1987, 91, 804.
(36) Harbison, G. S.; Herzfeld, J.; Griffin, R. G. Biochemistry 1983, 22, 1.
(37) Hildebrandt, P.; Stockburger, M. Biochemistry 1984, 23, 5539.
a probe for changes in Schiff base hydrogen bonding in retinal pigments. ${ }^{38}$

Figure 13 correlates the observed $\mathrm{C}-\mathrm{C}$ stretching frequencies in BR_{568} with those in the all-trans-PSB. The most striking feature of this correlation is that the frequency ordering and spacing is the same in each molecule, and that the frequencies are $\sim 10 \mathrm{~cm}^{-1}$ higher in BR_{568}. Since s-trans $\rightarrow s$-cis isomerization about the $\mathrm{C}_{10}-\mathrm{C}_{11}$ or $\mathrm{C}_{14}-\mathrm{C}_{15}$ bonds would lower the associated $\mathrm{C}-\mathrm{C}$ stretching frequency by $\sim 100 \mathrm{~cm}^{-1},{ }^{39}$ the increased frequency of these modes in BR_{568} argues that these bonds are in the s-trans conformation. The increase of the $\mathrm{C}-\mathrm{C}$ stretching frequencies is best attributed to increased $\mathrm{C}-\mathrm{C}$ bond order due to electron delocalization of the conjugated π-system. The delocalized electronic structure is presumably responsible for the shift in the chromophore's absorption maximum from 440 nm in the PSB to 568 nm . This opsin shift has recently been shown to result from at least three factors. First, isomerization of the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond from $6-s$-cis in the PSB to 6-s-trans in BR_{568} allows the π-electrons in the $\mathrm{C}_{5}=\mathrm{C}_{6}$ bond to more fully conjugate with the retinal chain. ${ }^{10-12,40}$ The shift of the absorption maximum upon s-cis (nonplanar) $\rightarrow s$-trans (planar) isomerization is expected to be $\sim 25 \mathrm{~nm} .^{40,41}$ Second, a negative bacteriorhodopsin charge (or the minus end of a dipole) placed near C_{5} of the retinal chromophore pushes the π-electrons toward the Schiff base and stabilizes positive charge at $\mathrm{C}_{5}{ }^{16,42}$ The influence of this perturbation is diminished by the presence of a positive bacteriorhodopsin residue (or the positive end of a dipole) near $\mathrm{C}_{7}{ }^{10}$ Finally, a weakened hydrogen bond between the Schiff base proton and its protein counterion ${ }^{36,37}$ enhances delocalization by reducing the stability of positive charge at the Schiff base. It now appears that the latter factor is the dominant contributor to the opsin shift in $\mathrm{BR}_{568 \cdot}{ }^{11,12}$ The observation that each $\mathrm{C}-\mathrm{C}$ stretching frequency shifts $\sim 10 \mathrm{~cm}^{-1}$ is in agreement with the idea that π-electron delocalization is generated by protein effects at the two "poles" of the retinal chromophore, the Schiff base and the ionone ring. The $11-18-\mathrm{cm}^{-1}$ upshift of the " $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch" in the protein provides only weak evidence for this picture since this mode is quite delocalized. This delocalization arises because the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch is the highest frequency $\mathrm{C}-\mathrm{C}$ mode and consequently couples most strongly with the $\mathrm{CC}-\mathrm{H}$ rocks. The alternative idea that protein perturbations localized at C_{12} or C_{13} are responsible for the shift of the $\mathrm{C}_{12}-\mathrm{C}_{13}$ mode is not likely since no large protein perturbations are observed in the ${ }^{13} \mathrm{C}$ NMR chemical shifts of BR_{568} in the $\mathrm{C}_{12}-\mathrm{C}_{13}$ region. ${ }^{10}$

The Raman intensities of the $\mathrm{C}=\mathrm{C}$ stretching fundamentals of BR_{568} can also provide useful information about chromophore structure and environment. The observed intensity of a $\mathrm{C}=\mathrm{C}$ stretching mode is directly related to bond length changes upon electronic excitation. The spectra presented here make it clear that the largest ground \rightarrow excited state geometry changes in BR_{568} are associated with the central double bonds in the chain. For example, the $1491-\mathrm{cm}^{-1}$ line in $11,12-\mathrm{D}_{2}-\mathrm{BR}_{568}$ is a fairly localized $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch and it carries the majority of the Raman intensity. A similar qualitative analysis of other modes in native BR_{568} can be made if they are sufficiently localized to avoid mode mixing effects. The weak intensity of the Schiff base mode suggests that the $\mathrm{C}_{15}=\mathrm{N}$ bond undergoes small changes upon excitation. Similarly, the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretching fundamental at $1600 \mathrm{~cm}^{-1}$ has

[^8]essentially no Raman intensity. These results can now be compared with theoretical calculations on BR_{568}. Kakitani et al. ${ }^{43}$ calculated the properties of the BR chromophore with a negative point charge near the ionone ring. They predict ground \rightarrow excited state changes in bond length of 0.027 and $0.028 \AA$ for the $\mathrm{C}_{5}=\mathrm{C}_{6}$ and $\mathrm{C}=\mathrm{N}$ bonds and somewhat smaller changes for the $\mathrm{C}_{9}=\mathrm{C}_{10}$ and $\mathrm{C}_{11}=\mathrm{C}_{12}$ bonds (0.023 and $0.021 \AA$, respectively). The qualitative discrepancy between the calculated bond length changes and our observed intensities cannot be resolved by mode mixing effects. The insensitivity of the Schiff base mode to ${ }^{13} \mathrm{C}$ labeling of the other $\mathrm{C}=\mathrm{C}$ stretches shows that the $\mathrm{C}=\mathrm{N}$ vibration is not highly mixed with other $\mathrm{C}=\mathrm{C}$ stretching internal coordinates which cancel its intrinsic intensity. Similarly, the ${ }^{13} \mathrm{C}_{5}$ and ${ }^{13} \mathrm{C}_{6}$ data indicate that the $\mathrm{C}_{5}=\mathrm{C}_{6}$ stretching coordinate is not mixed with other more intense $\mathrm{C}=\mathrm{C}$ stretches. Thus the $\mathrm{C}=\mathrm{C}$ mode Raman intensities suggest that the calculations in ref 43 do not provide an accurate description of the electronic structure of the chromophore in BR_{568}.

The intensities of the hydrogen out-of-plane modes provide another probe of chromophore structure in BR_{568}. HOOP modes are expected to be weak in intensity in the Raman spectrum of a planar chromophore. However, these lines can be strongly enhanced by torsional deformations. Strong HOOP vibrations are observed in the Raman spectra of bacteriorhodopsin's K_{625} and O_{640} intermediates, ${ }^{14,44}$ and in bathorhodopsin, ${ }^{45}$ the primary photoproduct of the visual pigment rhodopsin. The absence of intense HOOP modes in BR_{568} indicates that the chromophore is not strongly torsionally distorted.
Although the HOOP intensity is generally low in BR_{568}, those modes exhibiting intensity, the $882-\mathrm{cm}^{-1} \mathrm{C}_{14} \mathrm{H}$ wag and the $830-\mathrm{cm}^{-1}$ lysine $-\mathrm{CH}_{2}$ wag, are associated with the Schiff base portion of the chromophore. Thus, a study of their Raman intensity should afford quantitative information on the ground \rightarrow excited state geometry changes that lead to isomerization and proton pumping. The intensities of these modes have been quantitatively studied by Myers et al. ${ }^{46}$ The ground \rightarrow excited state geometry change Δ (in dimensionless normal coordinates) for the $882-\mathrm{cm}^{-1}$ mode is 0.19 , indicating a small but possibly significant slope of the excited state surface along the $\mathrm{C}_{14} \mathrm{HOOP}$ coordinate in the Franck-Condon region. Models for the primary photochemistry which involve a $\mathrm{C}_{13}=\mathrm{C}_{14}$-trans, $\mathrm{C}_{14}-\mathrm{C}_{15}$-s-trans $\rightarrow \mathrm{C}_{13}=\mathrm{C}_{14}$-cis, $\mathrm{C}_{14}-\mathrm{C}_{15}$-s-cis isomerization would predict a large Δ in this mode, since the primary structural change involves out-of-plane motion of the C_{14} hydrogen. ${ }^{47,48}$
In summary, the results presented here indicate that the modified Urey-Bradley force field that we have developed for retinals is reliable. By applying the required geometric changes plus relatively modest changes in force constants, we have been able to fit a large body of isotopic data for all-trans-retinal, ${ }^{8}$ its 13 -cis, 11 -cis, and 9 -cis isomers, ${ }^{29}$ the all-trans-retinal PSB, ${ }^{9}$ $\mathrm{BR}_{548}{ }^{35}$ and now BR_{568}. If new isotopic data, infrared spectra, or Raman intensities were included in the BR_{568} analysis, the force field could be improved further. Also, it would certainly be possible to refine a different form for the field (e.g., valence) to fit the isotopic data successfully. However, since the magnitude of the isotopic shift of a mode can be quantitatively related to the motion of the labeled atom in that mode, ${ }^{49}$ any calculation that successfully reproduces the isotopic shifts must give very similar atomic displacements for the labeled atoms. The success of this calculation on BR_{568} indicates that we can now go on to interpret
(43) Kakitani, H.; Kakitani, T.; Rodman, H.; Honig, B.; Callender, R. J. Phys. Chem. 1983, 87, 3620.
(44) Braiman, M.; Mathies, R. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 403.
(45) Eyring, G.; Curry, B.; Broek, A.; Lugtenburg, J.; Mathies, R. Biochemistry 1982, 21, 384.
(46) Myers, A. B.; Harris, R. A.; Mathies, R. A. J. Chem. Phys. 1983, 79, 603.
(47) Tavan, P.; Schulten, K.; Oesterhelt, D. Biophys. J. 1985, 47, 415.
(48) Liu, R. S. H.; Mead, D.; Asato, A. E. J. Am. Chem. Soc. 1985, 107, 6609.
(49) Kitagawa, T.; Nishina, Y.; Kyogoku, Y.; Yamano, T.; Ohishi, N.; Takai-Suzuki, A.; Yagi, K. Biochemistry 1979, 18, 1804.
vibrational spectra in terms of chromophore structure in other retinal pigments such as rhodopsin, halorhodopsin, and sensory rhodopsin.

Acknowledgment. We thank T. Kitagawa for insightful comments. This research was supported by the National Science Foundation (CHE-8116042), the National Institutes of Health (EY-02051 and GM 27057), the Netherlands Foundation for

Chemical Research (S.O.N,), and the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). ${ }^{15} \mathrm{~N}-\mathrm{BR}$ was generously provided by J. Herzfeld.

Supplementary Material Available: The Cartesian coordinates used in the calculations and a complete description of the force field will be found in Tables XIV and XV (7 pages). Ordering information is given on any current masthead page.

Vibrational Circular Dichroism of Poly(ribonucleic acids). A Comparative Study in Aqueous Solution

A. Annamalai and T. A. Keiderling*
Contribution from the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60680. Received August 11, 1986

Abstract

Vibrational circular dichroism data of several synthetic polyribonucleotides have been measured at neutral pH and room temperature in the $1750-1550-\mathrm{cm}^{-1}$ region with sodium cacodylate buffer in $\mathrm{D}_{2} \mathrm{O}$ as a solvent and are compared to similar data for monomers and dimers. Polynucleotides studied include homopolymers, some random copolymers, and two double stranded RNAs. The mononucleotides yield no significant VCD whereas, in most cases, the polymers have relatively larger, conservative bisignate VCD signals. The VCD magnitudes of the homodimers, ApA and CpC , are significantly smaller than those of the corresponding polymers but have the same sign pattern. This pattern is consistent with the result of coupled oscillator calculations for these two dimers. VCD of poly(C) has also been measured as a function of temperature and pD. Variation in VCD band shape and magnitude can be correlated to base stacking, base pairing, and degree of order.

Vibrational circular dichroism (VCD) has developed over the past decade from its initial status as an unusual physical phenomenon to one that can be routinely measured on a variety of compounds over a wide spectral range. ${ }^{1-5}$ Stereochemists have long appreciated that the multiple, local chromophores accessible with VCD (or the complementary Raman circular intensity differential ${ }^{2}$) offer a potential source of new experimentally derived information about solution-phase molecular conformation. This promise is beginning to be realized via both theoretical and empirical analyses of the spectra. ${ }^{6-9}$

[^9]One field of seemingly useful application for VCD is that of biopolymer conformation. Several studies of pulypeptide and oligopeptide VCD and the relationship of that data to secondary structure have appeared from our and other laboratories. ${ }^{9}$ Until this paper, no parallel work on nucleic acids has appeared. Here we report the first VCD measurements of riboxy-dinucleoside monophosphates and polyrucleotides which were made on synthetic samples studied in neutral aqueous solution in the base stretching ($\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}$) region, $1750-1550 \mathrm{~cm}^{-1}$. Our results will be correlated to previous conformational studies on these species.

While extensive use of electronic CD has been made to interpret nucleic acid base stacking, conformational change, and duplex formation, ${ }^{10}$ the parallel application of infared (IR) spectroscopy has been less extensive, ${ }^{11,12}$ This perhaps results from the small
(9) Singh, R. D.; Keiderling, T. A. Biopolymers 1981, 20, 237-240. Lal, B.; Nafie, L. A. Biopolymers 1982, 21, 2161-2183. Sen, A. C.; Keiderling, T. A. Biopolymers 1984, 23, 1519-1532. Sen, A. C..; Keiderling, T. A. Biopolymers 1984, 23, 1533-1545. Narayanan, U.; Keiderling, T. A.; Bonora, G. M.; Toniolo, C. Biopolymers 1985, 24, 1257-1263. Yasui, S. C.; Keiderling, T. A. Biopolymers 1986, 25, 79-89. Yasui, S. C.: Keiderling, T. A.; Bonora, G. M.; Toniolo, C. Biopolymers 1986, 25, 5-15. Narayanan, U.; Keiderling, T. A.; Bonora, G. M.; Toniolo, C. J. Am. Chem. Soc. 1986, 108 , 2431-2437. Yasui, S. C.; Sen, A. C.; Keiderling, T. A.; Toniolo, C.; Bonora, G. M. Peptides Structure and Functioil; Proceedings of the 9th American Peptide Symposium; Deber, C. M., Hruby, V. J., Kopple, K. D., Eds.; Pierce Chemical: Rockford, IL, 1985, pp 167-172. Lipp, E. D.; Nafie, L. A. Biopolymers 1985, 24, 799-812.
(10) Bush, C. A.; Brahms, J. In Physico-Chemical Properties of Nucleic Acids; Duchesne, J., Ed.; Academic Press: New York, 1973; Vol. 2, pp 147-186. Bush, C. A. In Basic Principles in Nucleic Acid Chemistry; Ts'o, P. O. P., Ed.; Academic Press: New York, 1974; Vol. II, pp 92-172.
(11) Hartman, K. A.; Lord, R. C.; Thomas, G. J., Jr. In Physico-Chemical Properties of Nucleic Acids; Duchesne, J., Ed.; Academic Press: New York, 1973; Vol. 2, pp 1-91. Tsuboi, M. In Basic Principles of Nucleic Acid Chemistry; T'so, P. O. P., Ed.; Academic Press: New York, 1974; Vol. I, pp 399-452.
(12) Tsuboi, M.; Takahashi, S.; Harada, I. In Physico-Chemical Properties of Nucleic Acids; Duchesne, J., Ed.; Academic Press: New York, 1973; Vol. 2, pp 91-146.

[^0]: (1) (a) University of California, Berkeley. (b) Leiden University. (c) Current address: Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA. (d) Current address: Physics Department, Boston University, Boston, MA. (e) Current address: Department of Chemistry, University of Rochester, Rochester, NY.
 (2) For reviews on Raman studies of enzymes and heme proteins see: (a) Carey, P. R.; Storer, A. C. Annu. Rev. Biophys. Bioeng. 1984, 13, 25. (b) Spiro, T. G. In Advances in Protein Chemistry; Anfinsen, C. B., Edsall, J. T., Richards, F. M., Eds.; Academic Press: New York, 1985; Vol. 37, p 111.
 (3) For reviews on Raman studies of rhodopsins see: (a) Mathies, R. A.; Smith, S. O.; Palings, I. In Biological Applicalions of Raman Spectroscopy; Spiro, T. G., Ed.; Wiley-Interscience: New York, 1987; Vol. 2, p 59. (b) Smith, S. O.; Lugtenburg, J.; Mathies, R. A. J. Memb. Biol. 1985, 85, 95. (c) Stockburger, M.; Alshuth, T.; Oesterhelt, D.; Gärtner, W. Adv. Infrared Raman Spectrosc. 1986, 13, 483. (d) Warshel, A. Annu. Rev. Biophys. Bioeng. 1977, 6, 273. (e) Callender, R.; Honig, B. Annu. Rev. Biophys. Bioeng. 1977, 6, 33.
 (4) Terner, J.; El-Sayed, M. A. Acc. Chem. Res. 1985, 18, 331.
 (5) (a) Rothschild, K. J.; Roepe, P.; Lugtenburg, J.; Pardoen, J. A. Biochemistry 1984, 23, 6103. (b) Bagley, K. A.; Balogh-Nair, V.; Croteau, A. A.; Dollinger, G.; Ebrey, T. G.; Eisenstein, L.; Hong, M. K.; Nakanishi, K.; Vittitow, J. Biochemistry 1985, 24, 6055. (c) Engelhard, M.; Gerwert, K.; Hess, B.; Kreutz, W.; Siebert, F. Biochemistry 1985, 24, 400.

[^1]: (10) Harbison, G. S.; Smith, S. O.; Pardoen, J. A.; Courtin, J. M. L.; Lugtenburg, J.; Herzfeld, J.; Mathies, R. A.; Griffin, R. G. Biochemislry 1985, 24, 6955.
 (11) Lugtenburg, J.; Muradin-Szweykowska, M.; Heeremans, C.; Pardoen, J. A.; Harbison, G. S.; Herzfeld, J.; Griffin, R. G.; Smith, S. O.; Mathies, R. A. J. Am. Chem. Soc. 1986, 108, 3104.
 (12) Spudich, J. L.; McCain, D. A.; Nakanishi, K.; Okabe, M.; Shimizu, N.; Rodman, H.; Honig, B.; Bogomolni, R. A. Biophys. J. 1986, 49, 479. (13) (a) Lugtenburg, J. Pure Appl. Chem. 1985, 57, 753. (b) Lugtenburg, J. Spectroscopy of Biological Molecules; Reidel: Boston; NATO ASI Series C, 139, pp 447-455. (c) Courtin, J. M. L.; 't Lam, G. K.; Peters, A. J. M.; Lugtenburg, J. Recl. Trav. Chim. Pays-Bas 1985, 104, 281. (d) Pardoen, J. A.; van den Berg, E. M. M.; Winkel, C.; Lugtenburg, J. Recl. Trav. Chim. Pays-Bas 1986, 105, 92. (e) Pardoen, J. A.; Mulder, P. P. J.; van den Berg, E. M. M.; Lugtenburg, J. Can. J. Chem. 1985, 63, 1431.
 (14) Smith, S. O.; Pardoen, J. A.; Mulder, P. P. J.; Curry, B.; Lugtenburg, J.; Mathies, R. Biochemistry 1983, 22, 6141.
 (15) Braiman, M. S. Ph.D. Dissertation, 1983, University of California, Berkeley.
 (16) Smith, S. O. Ph.D. Dissertation, 1985, University of California, Berkeley.
 (17) Braiman, M.; Mathies, R. Biochemistry 1980, 19, 5421.
 (18) Mathies, R.; Oseroff, A. R.; Stryer, L. Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 1 .
 (19) Goldschmidt, C. R.; Ottolenghi, M.; Korenstein, R. Biophys. J. 1976, 16, 839.

[^2]: (20) Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations; McGraw-Hill: New York, 1955.
 (21) Warshel, A.; Karplus, M. J. Am. Chem. Soc. 1974, 96, 5677.
 (22) (a) Smith, S. O.; Myers, A. B.; Pardoen, J. A.; Winkel, C.; Mulder, P. P. J.; Lugtenburg, J.; Mathies, R. Proc. Natl. Acad. Sci. U.S.A. 1984, 81 , 2055. (b) Harbison, G. S.; Smith, S. O.; Pardoen, J. A.; Winkel, C.; Lugtenburg, J.; Herzfeld, J.; Mathies, R.; Griffin, R. G. Proc. Nall. Acad. Sci. U.S.A. 1984, 81, 1706.
 (23) Curry, B. Ph.D. Dissertation, 1982, University of California, Berkeley. The coordinates in the BR_{568} force field affected by isomerization about the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond and their 6 -s-lrans values are the following: $h\left(\mathrm{R}_{18} \mathrm{C}_{5} \mathrm{C}_{6}, \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7}\right)$, $0.338 ; h\left(\mathrm{R}_{1} \mathrm{C}_{6} \mathrm{C}_{7}, \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8}\right), \quad 0.338 ; h\left(\mathrm{R}_{1} \mathrm{C}_{6} \mathrm{C}_{7}, \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{H}\right), 0.076 ; h-$ $\left(\mathrm{R}_{4} \mathrm{C}_{5} \mathrm{C}_{6}, \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7}\right), 0.032 ; h\left(\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7}, \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8}\right), h\left(\mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8}, \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9}\right), 0.112$. In addition, the $m\left(\mathrm{C}_{6}-\mathrm{C}_{7}, \mathrm{C}_{6} \mathrm{C}_{5} \mathrm{R}_{4}\right), m\left(\mathrm{C}_{6}-\mathrm{C}_{7}, \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9}\right), m\left(\mathrm{C}_{6}-\mathrm{C}_{7}, \mathrm{C}_{6} \mathrm{C}_{5} \mathrm{R}_{18}\right)$, and $m\left(\mathrm{C}_{6}-\mathrm{C}_{7}, \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{H}\right)$ interaction constants change sign.

[^3]: ${ }^{a}$ Observed frequency $\left(\mathrm{cm}^{-1}\right.$). ${ }^{b}$ Raman intensity obtained by deconvolution of the $1500-1600-\mathrm{cm}^{-1}$ region of the Raman spectrum. Total Raman intensity in this region was normalized to $100 .{ }^{c}$ Calculated frequency $\left(\mathrm{cm}^{-1}\right) .{ }^{d}$ Sum of observed frequency shifts. ${ }^{e}$ Sum of the calculated frequency shifts.

[^4]: (24) Honig, B.; Hudson, B.; Sykes, B. D.; Karplus, M. Proc. Natl. Acad. Sci. U.S.A. 1971, 68, 1289 .

[^5]: (26) Aton, B.; Doukas, A. G.; Narva, D.; Callender, R. H.; Dinur, U.; Honig, B. Biophys. J. 1980, 29, 79.
 (27) Lewis, A.; Spoonhower, J.; Bogomolni, R. A.; Lozier, R. H.; Stoeckenius, W. Proc. Nall. Acad. Sci. U.S.A. 1974, 71, 4462.

[^6]: (28) Argade, P. V.; Rothschild, K. J.; Kawamoto, A. H.; Herzfeld, J.; Herlihy, W. C. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 1643.

[^7]: (29) Curry, B.; Palings, I.; Broek, A. D.; Pardoen, J. A.; Lugtenburg, J. Mathies, R, Adv. Infrared Raman Spectrosc. 1985, 12, 115.
 (30) Massig, G.; Stockburger, M.; Gaertner, W.; Oesterhelt, D.; Towner, P. J. Raman Spectrosc. 1982, 12, 287.

[^8]: (38) Recent studies on retinal Schiff base complexes with Lewis acids [Lopez-Garriga, J. J.; Babcock, G. T.; Harrison, J. F. J. Am. Chem. Soc. 1986, 108, 7131 and 7241] have led to an alternative analysis of the Schiff base mode in which $\mathrm{N}-\mathrm{H}$ rock to $\mathrm{C}=\mathrm{N}$ stretch coupling is not the dominant factor. In this case a similar correlation between the deuteriation-induced shift and hydrogen-bonding environment would be expected. However, it would arise from altered $\mathrm{N}-\mathrm{H}$ stretch to $\mathrm{C}=\mathrm{N}$ stretch coupling.
 (39) Smith, S. O.; Hornung, I.; van der Steen, R.; Pardoen, J. A.; Braiman, M. S.; Lugtenburg, J.; Mathies, R. A. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 967.
 (40) Honig, B.; Greenberg, A. D.; Dinur, U.; Ebrey, T. G. Biochemistry 1976, 15, 4593
 (41) van der Steen, R.; Biesheuvel, P. L.; Mathies, R. A.; Lugtenburg, J. J. Am. Chem. Soc. 1986, 108, 6410.
 (42) Nakanishi, K.; Balogh-Nair, V.; Arnaboldi, M.; Tsujimoto, K.; Honig, B. J. Am. Chem. Soc. 1980, 102, 7945.

[^9]: (1) Keiderling, T. A. Appl. Spectrosc. Rev. 1981, 17, 189-226.
 (2) Nafie, L. A. In Advances in Infrared and Raman Spectroscopy; Clark, R. J. H., Hester, R. E., Eds.; Heydon: London, 1984; Vol. 11, pp 49-93. Nafie, L. A. In Vibrational Spectra and Structure; Durig, J. R,, Ed.; Elsevier: New York, 1981; Vol. 10, pp 153-225. Nafie, L. A.; Diem, M. Acc. Chem. Res. 1979, 12, 296-302.
 (3) Stephens, P. J.; Clark, R. In Optical Activity and Chiral Discrimination; Mason, S. F., Ed.; Reidel: Dortrecht, 1979; pp 263-287.
 (4) Mason, S. F. In Advances in Infrared and Raman Spectroscopy; Clark, R. J. H., Hester, R. E., Eds.; Heyden: London, 1980; Vol. 8, pp 283-321. (5) Polavarapu, P. L. In Vibralional Spectra and Structure; Durig, J. R., Ed.; Elsevier: New York, 1984; Vol. 13, pp 103-160.
 (6) Su, C. N.; Keiderling, T. A. J. Am. Chem. Soc. 1980, 102, 511-515. Keiderling, T. A.; Stepheı1s, P. J. J. Am. Chem. Soc. 1979, 101, 1396-1400. Singh, R. D.; Keiderling, T. A. J. Chem. Phys. 1981, 74, 5347-5356. Singh, R. D.; Keiderling, T. A. J. Am. Chem. Soc. 1981, 103, 2387-2394. Polavarapu, P. L.; Nafie, L. A. J. Chem. Phys. 1980, 73, 1567-1575. Marcott, C.; Scanlon, K.; Overand, J.; Moscowitz, A. J. Am. Chem. Soc. 1981, 103, 483-485.
 (7) Freedman, T. B.; Balukjian, G. A.; Nafie, L. A. J. Am. Chem. Soc. 1985, 107, 6213-6222. Young, D. A.; Lipp, E. D.; Nafie, L. A. J. Am. Chem. Soc. 1985, 107, 6206-6213. Oboodi, M. R.; Lal, B. B.; Young, D. A.; Freedman, T. B.; Nafie, L. A. J. Am. Chem. Soc. 1985, 107, 1547-1556.
 (8) Polavarapu, P. L.; Nafie, L. A. J. Am. Chem. Soc. 1980, 102, 5449-5453. Laux, L.; Pultz, V.; Abbate, S.; Havel, H. A.; Overend, J. A.; Moscowitz, A.; Lightner, D. A. J. Am. Chem. Soc. 1982, 104, 4276-4278. Heintz, V. J.; Keiderling, T. A. J. Am. Chem. Soc. 1981, 103, 2395-2403. Su, C. N.; Keiderling, T. A. Chem. Phys. Letl. 1981, 77, 494-499. Su, C. N.; Keiderling, T. A.; Misiura, K.; Stec, W. J. J. Am. Chem. Soc. 1982, 104, 7343-7344.

